

AQUIND Limited AQUIND INTERCONNECTOR

Environmental Statement – Volume 3 – Appendix 23.3 Air Quality Traffic Modelling

The Planning Act 2008

The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 – Regulation 5(2)(a)

The Infrastructure Planning (Environmental Impact Assessment) Regulations 2017

Document Ref: 6.1.23.3 PINS Ref.: EN020022

AQUIND Limited

AQUIND INTERCONNECTOR

Environmental Statement – Volume 3 – Appendix 23.3 Air Quality Traffic Modelling

PINS REF.: EN020022 DOCUMENT: 6.1.23.3

DATE: 6 OCTOBER 2020

WSP WSP House 70 Chancery Lane London WC2A 1AF +44 20 7314 5000 www.wsp.com

AQUIND Limited

DOCUMENT

Document	6.1.23.3 Environmental Statement - Volume 3 – Appendix 23.3 Air Quality Traffic Modelling
Revision	002
Document Owner	WSP UK Limited
Prepared By	L. Shelton
Date	1 June 2020
Approved By	S. Bennett
Date	1 June 2020

CONTENTS

APPE	APPENDIX 23.3 AIR QUALITY TRAFFIC MODELLING	
1.1.	SCOPE OF THE ASSESSMENT	1
1.2.	ASSESSMENT METHODOLOGY	2
1.3.	BASELINE ENVIRONMENT	17
1.4.	PREDICTED IMPACTS	45
REFE	RENCES	93

TABLES

Table 1 - Indicative Traffic Screening Criteria	2
Table 2 - Individual Identified Representative Receptors	4
Table 3 - Relevant Havant Diffusion Tube Results	18
Table 4 - Relevant City of Portsmouth Diffusion Tube Monitoring Results	19
Table 5 - Zone 1 Diffusion Tube Verification and Adjustment Factor Derivation	24
Table 6 – Zone 1 Model Performance	27
Table 7 - Zone 2 Diffusion Tube Verification and Adjustment Factor Derivation	28
Table 8 - Zone 2 Model Performance	31
Table 9 - Zone 3 Diffusion Tube Verification and Adjustment Factor Derivation	32
Table 10 - Zone 3 Model Performance	34
Table 11 - Zone 4 Diffusion Tube Verification and Adjustment Factor Derivation	35
Table 12 - Zone 4 Model Performance	37
Table 13 - Zone 5 Diffusion Tube Verification and Adjustment Factor Derivation	38
Table 14 - Zone 5 Model Performance	40
Table 15 - Zone 6 Diffusion Tube Verification and Adjustment Factor Derivation	41
Table 16 - Zone 6 Model Performance	43

Table 17 - Comparison of Correction Factors With- and Without the Complex C	anyon
Module	43
Table 18 - Comparison of RMSE for each verification zone	45
Table 19 - Impacted Receptors in Verification Zone 1	46
Table 20 - Particularly Sensitive Receptors in Verification Zone 1	46
Table 21 – Non-construction Related Traffic Assessment Results for the Do- Something Scenario 1 (2026) for Verification Zone 1	47
Table 22 – Non-construction Related Traffic Assessment Results for the Do-Something Scenario 2 (2026) for Verification Zone 1	48
Table 23 - Verification Zone 1 Representative Receptor Selection	50
Table 24 - Impacted Receptors in Verification Zone 2	52
Table 25 - Particularly Sensitive Receptors in Verification Zone 2	52
Table 26 – Non-construction Related Traffic Assessment Results for the Do-Something Scenario 1 (2026) for Verification Zone 2	52
Table 27 – Non-construction Related Traffic Assessment Results for the Do- Something Scenario 2 (2026) for Verification Zone 2	54
Table 28 - Verification Zone 2 Representative Receptor Selection	56
Table 29 - Impacted Receptors in Verification Zone 3	58
Table 30 - Particularly Sensitive Receptors in Verification Zone 3	58
Table 31 – Non-construction Related Traffic Assessment Results for the Do- Something Scenario 1 (2026) for Verification Zone 3	59
Table 32 – Non-construction Related Traffic Assessment Results for the Do- Something Scenario 2 (2026) for Verification Zone 3	60
Table 33 - Verification Zone 3 Representative Receptor Selection	62
Table 34 - Impacted Receptors in Verification Zone 4	63
Table 35 - Particularly Sensitive Receptors in Verification Zone 4	63
Table 36 – Non-construction Related Traffic Assessment Results for the Do- Something Scenario 1 (2026) for Verification Zone 4	64
Table 37 – Non-construction Related Traffic Assessment Results for the Do- Something Scenario 2 (2026) for Verification Zone 4	65
Table 38 - Verification Zone 4 Representative Receptor Selection	67
Table 39 - Impacted Receptors in Verification Zone 5	68

Table 40 - Particularly Sensitive Receptors in Verification Zone 5	68
Table 41 – Non-construction Related Traffic Assessment Results for the Do- Something Scenario 1 (2026) for Verification Zone 5	69
Table 42 – Non-construction Related Traffic Assessment Results for the Do- Something Scenario 2 (2026) for Verification Zone 5	71
Table 43 - Verification Zone 5 Representative Receptor Selection	73
Table 44 - Impacted Receptors in Verification Zone 6	77
Table 45 - Particularly Sensitive Receptors in Verification Zone 6	77
Table 46 – Non-construction Related Traffic Assessment Results for the Do- Something Scenario 1 (2026) for Verification Zone 6	77
Table 47 – Non-construction Related Traffic Assessment Results for the Do- Something Scenario 2 (2026) for Verification Zone 6	80
Table 48 - Verification Zone 6 Representative Receptor Selection	82
Table 49 - Impacted Receptors affected by AQMAs	84
Table 50 - Particularly Sensitive Receptors affected by AQMAs	84
Table 51 – Non-construction Related Traffic Assessment Results for the Do- Something Scenario 1 (2026) for AQMAs	85
Table 52 – Non-construction Related Traffic Assessment Results for the Do- Something Scenario 2 (2026) for AQMAs	86
Table 53 - Impacted Receptors for Construction Traffic	88
Table 54 - Particularly Sensitive Receptors for Construction Traffic	89
Table 55 – Generated Construction Traffic Assessment Results for the Do-Someth Scenario 1 (2026)	ing 89
Table 56 – Generated Construction Traffic Assessment Results for the Do-Someth Scenario 2 (2026)	ing 90

PLATES

Plate 1 - Model Verification Zones	13
Plate 2 - Zone 1 Graph of Monitored NO_2 against Modelled NO_2 before Adjustment	26
Plate 3 - Zone 1 Graph of Monitored NO ₂ against Modelled NO ₂ after Adjustment	26

Plate 4 - Zone 2 Graph of Monitored NO₂ against Modelled NO₂ before Adjustment 30 Plate 5 - Zone 2 Graph of Monitored NO₂ against Modelled NO₂ after Adjustment 30 Plate 6 - Zone 3 Graph of Monitored NO₂ against Modelled NO₂ before Adjustment 33 Plate 7 - Zone 3 Graph of Monitored NO₂ against Modelled NO₂ after Adjustment 33 Plate 8 - Zone 4 Graph of Monitored NO₂ against Modelled NO₂ before Adjustment 36 Plate 9 - Zone 4 Graph of Monitored NO₂ against Modelled NO₂ after Adjustment 36 Plate 10 - Zone 5 Graph of Monitored NO₂ against Modelled NO₂ before Adjustment 39 Plate 11 - Zone 5 Graph of Monitored NO₂ against Modelled NO₂ after Adjustment 39 Plate 12 - Zone 6 Graph of Monitored NO₂ against Modelled NO₂ before Adjustment 42 Plate 13 - Zone 6 Graph of Monitored NO₂ against Modelled NO₂ after Adjustment 42

APPENDIX 23.3 AIR QUALITY TRAFFIC MODELLING

1.1. SCOPE OF THE ASSESSMENT

1.1.1. INTRODUCTION

1.1.1.1. This appendix details the methodology for the assessment of traffic impacts that was undertaken for the temporary effects of construction traffic and the temporary effects of road closures and diversions resulting from the construction works for the AQUIND Interconnector.

1.1.2. STUDY AREA

1.1.2.1. The study areas for the construction traffic assessment and the road closure and diversion assessment were defined by the traffic modelling data supplied by Systra as detailed in Chapter 22 Traffic and Transport (APP-137).

Construction Traffic

1.1.2.2. The construction traffic routes relevant to the converter station and cabling operations are described in Chapter 22 Traffic and Transport, and are shown in Figure 23.3 (APP-325). Following the guidance from the Design Manual for Roads and Bridges ('DMRB') (The Highways Agency, 2007), a study area up to 200 m from the road centreline supplied with the traffic model was selected, as beyond this distance air pollutant emissions from traffic are expected to have dispersed to a concentration equivalent to background concentrations. The 200 m study area is shown in Figure 23.3. The supplied traffic flow data was screened against the criteria in Institute of Air Quality Management ('IAQM') construction dust assessment guidance (Institute of Air Quality Managment, 2016) and criteria in the IAQM Planning Guidance (Moorcroft, et al., 2017) to obtain an affected road network. Given the sensitivities associated with air quality in the City of Portsmouth area, a decision was taken to include all the supplied construction traffic routes within the study area for assessment as affected roads.

Road Closures and Diversions

1.1.2.3. The road closures and diversions are described in Chapter 22 Traffic and Transport. The traffic data supplied by Systra was screened against criteria from the IAQM planning guidance (Moorcroft, et al., 2017) to obtain an affected road network for assessment. Where an Air Quality Management Area ('AQMA') was found to include affected roads, the more stringent criteria from the IAQM Planning Guidance was

applied. Professional judgement was used to obtain a contiguous affected road network for assessment that would reflect the movement of traffic in the City of Portsmouth and any associated changes in air quality. Following guidance from the DMRB HA 207/07 (The Highways Agency, 2007), a study area up to 200 m from the affected road network centreline supplied with the traffic model was selected, as beyond this distance air pollutant emissions from traffic are expected to have dispersed to a concentration equivalent to background concentrations. The 200 m study area is shown in Figure 23.4 (APP-326).

1.2. ASSESSMENT METHODOLOGY

1.2.1. CONSTRUCTION STAGE

<u>Screening</u>

1.2.1.1. Data from the transport assessment was screened against criteria from the IAQM construction dust guidance (Institute of Air Quality Managment, 2016) and the IAQM Planning Guidance (Moorcroft, et al., 2017) in order to obtain an affected road network. Construction traffic was added to the model for traffic diversions by the WSP transport team as detailed in Chapter 22 (Traffic and Transport). Where affected links were found to be within an AQMA, the more stringent screening criteria from the IAQM Planning Guidance were applied as in Table 1.

Table 1 - Indicative Traffic Screening Criteria

The development will:	Indicative criteria to Proceed to an Air Quality Assessment
1. Cause a significant change in Light Duty Vehicle (LDV) traffic flows on local roads with relevant receptors. (LDV = cars and small vans <3.5 t gross vehicle	A change of LDV flows of: - more than 100 AADT within or adjacent to an AQMA
weight).	- more than 500 AADT elsewhere.
2. Cause a significant change in Heavy Duty Vehicle (HDV) flows on local roads with relevant receptors. (HDV = goods vehicles + buses >3.5 t gross vehicle weight).	A change of HDV flows of: - more than 25 AADT within or adjacent to an AQMA - more than 100 AADT elsewhere.

- 1.2.1.2. This produced an affected road network that included contiguous and non-contiguous sections. Where non-contiguous sections were present, professional judgement was used to join up areas, e.g. between adjacent AQMAs, to produce a collection of contiguous road networks.
- 1.2.1.3. This was undertaken for each of the two Do-Something scenarios supplied compared

to the Do-Minimum Scenario, with the differences compiled such that the affected road network for each of the Do-Something scenarios was the same.

1.2.1.4. Further modification of the affected road network was undertaken following consultation with the relevant Environmental Health Officers ('EHO'), in particular EHO for Havant Borough Council who indicated that only specific areas of the affected road network in the district of Havant would require assessment due to the known presence of elevated concentrations of NO₂ in these areas.

Baseline Year

- 1.2.1.5. In order that a robust assessment can be undertaken, a Baseline year is required for assessment that can be used to validate the model outputs through comparison with monitored data.
- 1.2.1.6. The most recent diffusion tube monitoring data (for 2018) was obtained from each of the affected local authorities where it was appropriate. Monitored NO₂ concentrations were converted to NO_x concentrations using the Defra NO_x to NO₂ Calculator v7.0 (May 2019) (Department for the Environment, Food & Rural Affairs, 2019) The supplied traffic data for the 2026 future baseline Do-Minimum scenario was factorised using the Department for Transport Trip End Model Presentation Program (TEMPro) version 7.2 to match the year of the monitored data.

Receptors

1.2.1.7. Representative receptors were chosen covering the entire modelled network based on the methodology used in the Department for Transport WebTAG methodology. representative receptors at distances of 20 m, 70 m, 115 m and 175 m were interpolated either side of each affected link using QuantumGIS (QGIS) v3.8 from the mid-point of each affected road link. Additional representative receptors were interpolated at 4 m from the centre of each affected road link in order to provide an indication of compliance with the EU Directive 2008/50/EC. The relevant modelled concentration was applied to representative receptors, chosen as those experiencing either the highest concentrations or largest changes in a Verification Zone. These are presented in Table 2.

Table 2 - Individual Identified Representative Receptors

Name	x	У	Class	In AQMA
Verification Zone 1				
I Glancey, 108 New Road	465415	101428	Community	No
Meadow House Rest Home, 47-51 Stubbington Avenue	465232	102361	Residential	Yes
Stubbington Avenue Dental Practice, Ring Baxter & Reid, 12 Stubbington Avenue	465081	102326	Community	Yes
Good Manors Day Nursery, Stubbington Lodge, 45 Stubbington Avenue	465199	102365	Community	Yes
The Harbour School Stamshaw, Ranelagh Road	464202.4	102388	Community	No
24 Grafton Street	464443	101317	Residential	Yes
110 Grafton Street	464463	101375	Residential	Yes
401j Old Commercial Road	464410	101270	Residential	Yes
St. John Ambulance, 406-414 Old Commercial Road	464438	101263	Community	Yes
14 Harbour Way	464054	102853	Residential	No
4 Osier Close	464067	102999	Residential	No
Horndean House, Percy Chandler Street	464599	100619	Residential	No
Horndean House, Percy Chandler Street	464599	100619	Residential	No

Name	x	у	Class	In AQMA	
Verification Zone 2					
My Dentist, B P Henning Dental Surgeon, 310 Chichester Road	465950	102005	Community	No	
Doctors Surgery, 111 Copnor Road	465970	101871	Community	No	
Mary Rose Manor, Copnor Road	466008	101789.3	Residential	No	
Shearwater, 18 Moorings Way	466733.3	100380.6	Residential	Yes	
Portsmouth College, Tangier Road	467360	101435	Community	No	
Tangier Road Children's Home, 265-267 Tangier Road	467276.9	101502.9	Residential	No	
94 Eastern Road	466758	100631	Residential	Yes	
5 Hayling Avenue	466152	101216	Residential	No	
3 Plover Reach	466737	100262	Residential	Yes	
18 The Haven	466967	100434	Residential	Yes	
The Harbour School, Waterside Unit, Locksway Road	467372.2	99960.21	Community	No	
University of Portsmouth, Bungalow 2, Flat 10 Langstone Student Village, Furze Lane	467614	100094.1	Residential	No	
Miltoncross Academy, Milton Road	466304.7	100547.6	Community	No	
The Limes, Woodlands Walk	467367	100182.2	Community	No	

Name	x	у	Class	In AQMA
Solent NHS Trust, St Marys Hospital, Milton Road	466055	100450	Community	No
27 Finch Road	467635	99257	Community	No
51 Fort Cumberland Road	467810	99175	Residential	No
36 Finch Road	467724	99245	Residential	No
AI 4 Southsea Leisure Park, Melville Road	467756.8	99070.88	Commercial	No
88 Seaway Crescent	467611	99817	Residential	No
The Thatched House, Milton Locks	467740	99838	Residential	No
20 Broom Close	467736	99951	Residential	No
383 Eastern Road	467276	101191	Residential	No
229 Hayling Avenue	467155	101172	Residential	No
Verification Zone 3				
Admiral Lord Nelson School, Dundas Lane	466928	102498	Community	No
Stage 2 Business Centre, Dundas Lane	466854.3	102581	Commercial	No
Eastern Road Car Sales	467449.5	102135.8	Commercial	No
Texaco Ltd, Eastern Road Service Station, Eastern Road	467465	102127	Commercial	No
Building F, Bilton Way	467423	102828	Commercial	No

Name	x	У	Class	In AQMA
60 Ecton Lane	467110	103423	Residential	No
Morrisons, Anchorage Road	467282.8	103395	Commercial	No
Tudor Sailing Club, Eastern Road	467568	103047	Commercial	No
Seward Portsmouth, Building B, Bilton Way	467396	102916	Commercial	No
Smeg UK Ltd, 1-2 And 4, Interchange Park, Robinson Way	467264.4	103192.8	Commercial	No
Verification Zone 4				
Solent Infant School, Evelegh Road	467805	105860	Community	No
65 Evelegh Road	468275	105912	Community	No
A N A Treatment Centres Ltd, Fleming House, Waterworks Road	467880	105610	Community	No
331 Havant Road	468319	105803	Residential	No
3 Highbury Grove	465742	104850	Residential	No
6 Highbury Grove	465753	104810	Residential	No
11 Highbury Grove	465766	104848	Residential	No
77 Lealand Road	467596	105223	Residential	No
4 Copsey Close	467745	105661	Residential	No
96 Station Road	467367	105029	Residential	No

Name	x	У	Class	In AQMA
National Plastics, Unit B2, Mountbatten Business Park, Jackson Close	467431	104899	Commercial	No
Hampshire Sports Equipment Ltd, Unit A3 Mountbatten Business Park Jackson Close	467499	104878	Commercial	No
Sainsburys, Fitzherbert Road	467750	104990	Commercial	No
Farlington Sports Centre, Eastern Road	467594.3	104798.8	Commercial	No
Solent Fish Ltd, Unit 5, Marshlands Road	467960.5	105053.3	Commercial	No
Verification Zone 5				
K B Griffin Builders, Towers Farm, 16 Portsdown Hill Road	469419.8	106469.1	Residential	No
36 Hurstville Drive	468779	109005.8	Residential	No
Edenvale Nursing Home, 63-65 Silvester Road	468646.1	110941.5	Residential	No
2 Padnell Road	469233.1	111071.6	Community	No
Queenswood Surgery, 223 London Road	468752	110488.1	Community	No
197 London Road	468606.4	110203.2	Residential	No
Trimak Ltd, Cowpalin Family Practice, 26-30 London Road	469208.4	111028.8	Community	No
Purbrook Junior & Infant School, Aldermoor Road East	467810.8	108123.8	Community	No
Oaklands Care Home, 216 Stakes Hill Road	468644.4	108097.8	Residential	No

Name	x	У	Class	In AQMA
Latham Lodge Rest Home, 137-139 Stakes Road	468184.2	107781.8	Residential	No
Belmont Castle Rest Home, 18-20 Portsdown Hill Road	469360.7	106442.6	Residential	No
79 Silvester Road	468570.8	110977	Residential	No
31 Trefoil Close	468968.1	109089.4	Residential	No
2 Lower Bere Wood	468648.6	109027.4	Residential	No
9 Trefoil Close	468993.8	109097.1	Residential	No
28 Hurstville Drive	468759.6	108974.3	Residential	No
1 Dogwood Dell	468798.8	108359.2	Residential	No
3 Lily Avenue	466879	106864.9	Residential	No
45 Hurstville Drive	468870.9	109197.6	Residential	No
14 Siskin Grove	469348.2	109013.2	Residential	No
Broadways Coffee Shop, 14 London Road	467287.9	107876.3	Commercial	No
33c London Road	466943	106942	Residential	No
15 London Road	466914.9	106838.7	Residential	No
44 Stakes Road	467625	107771	Residential	No
Debney Lodge, Mey Close	468976.1	109279.5	Residential	No

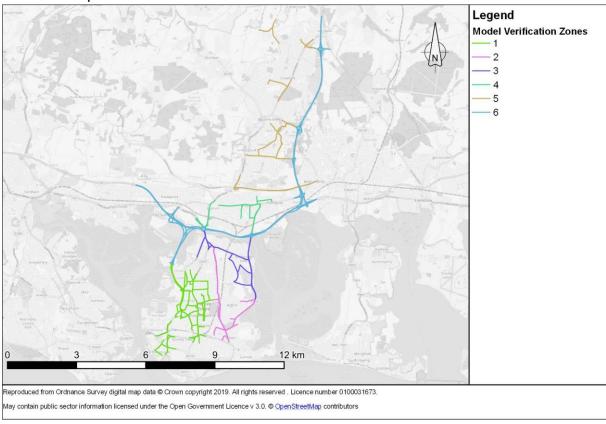
Name	x	У	Class	In AQMA
179 Park Avenue	467609.1	107735.4	Residential	No
2 Boundary Way	466745	106545	Residential	No
Lavender House, 121 Hillcrest, Denmead	466817	111784.6	Residential	No
Lily Cottage, 121 Hillcrest, Denmead	466868.7	111815	Residential	No
Managers Office, Wellesley Court, Darnel Road	467010.6	110631.8	Residential	No
The Conifers, Soake Road	466829	111045	Residential	No
Soake Farmhouse, Soake Road	466816	111111	Residential	No
The Coach House, Soake Road	466846	111164	Residential	No
35 Great Mead	466408	111314	Residential	No
St. Michaels, Hambledon Road	466845	110923	Residential	No
115 The Homestead, Anmore Road	466712	111820	Residential	No
117 Kings Cottage, Anmore Road	466740	111844	Residential	No
20 Mill Close	466639	111739	Residential	No
Verification Zone 6				
109 Browning Avenue	462499	106448	Community	No
Highbury College, Tudor Crescent	466131	104623.3	Community	No

Name	x	У	Class	In AQMA
Graduate Court, Tudor Crescent	466377.4	104485.1	Residential	No
37 Portsdown View	469539	106592	Residential	No
43 Coleridge Road	462734	106371	Residential	No
39 Falmouth Road	463045	106105	Residential	No
1 Falmouth Road	463164	105976	Residential	No
41 Tudor Crescent	465964	104580	Residential	No
97 Hillsley Road	462719	106489	Residential	No
19 Hillsley Road	462979	106336	Residential	No
Oyster Quay, Port Way	463773	104994	Residential	No
Oyster Quay, Port Way	463773	104994	Residential	No
Oyster Quay, Port Way	463805	105025	Residential	No

Traffic Model

- 1.2.1.8. Traffic impacts resulting from the proposed development were modelled using the Solent Sub-Regional Transport Model, which is a multi-modal strategic transport model for Hampshire, the Isle of Wight and Portsmouth. The model is operated by the Systra consultancy under contract to Solent Transport. The model includes calibrated 2015 baseline flows and covers predicted travel growth and committed developments up to 2041.
- 1.2.1.9. Given the length of the cabling works, it is likely that several sections will be worked on at any given point in time. Cabling construction is to be undertaken in 100 m sections, and it has been assumed that up to six 100 m sections will be under working conditions at any one time. Further detail is provided in Chapter 22 Traffic and Transport.
- 1.2.1.10. Three scenarios are provided as follows:
 - 2022 Do-Minimum which outlines conditions without construction of the proposed development;
 - 2022 Do-Something 1 (DS1) which incorporates cable works at six locations and lane closures on the northbound carriageway of the A2030 Eastern Road; and
 - 2022 Do-Something 2 (DS2) which incorporates cable works at six locations and lane closures on the southbound carriageway of the A2030 Eastern Road.
- 1.2.1.11. The assessment assumes that queueing and congestion is represented in the Systra SRTM traffic data through variations in link flow average daily speeds on the approach to junctions and roundabouts.
- 1.2.1.12. Data was provided for the air quality assessment in both tabular and GIS formats.

<u>Modelling</u>


- 1.2.1.13. Once screened, the data for the affected road networks was loaded into Cambridge Environmental Research Consultants ('CERC') Atmospheric Dispersion Modelling System for Roads ('ADMS-Roads') version 4.1.1. Geographical data for the affected road network was extracted using QGIS v3.8 and loaded in the ADMS-Roads model.
- 1.2.1.14. Emissions factors for each of the links within the affected road network were obtained using the Defra Emissions Factor Toolkit v9.0 (Department for Environment, Food & Rural Affairs, 2019).
- 1.2.1.15. Meteorological data was obtained for the 2018 Baseline year using the RAF Thorney Island monitoring station, with missing cloud cover data for this station filled in using data from the nearby Southampton Airport monitoring station in order to provide the most complete meteorological data file possible. A meteorological data file with 96.6% usable data was produced.
- 1.2.1.16. The effect of street canyons was examined, and the models were run with and without

the application of the complex street canyon module. Street canyons were determined through the use of OS Mastermap topography data for buildings within 15 m of the road centreline and processed using the ADMS ArcGIS Street Canyon Python Module to produce a complex street canyon file.

Results Processing

1.2.1.17. Modelled NO_x output was converted to NO₂ using the Defra NO_x to NO₂ Calculator and a linear verification applied against monitored NO₂ data from the relevant council. The affected road network was broken down into zones according to the presence of the affected link's geographical location, the presence of monitoring, and the type of link present as shown in Plate 1.

Plate 1 - Model Verification Zones

1.2.1.18. The modelled road component concentrations for each of the representative modelling points were combined with the relevant background concentrations to produce a total concentration. The modelled total concentrations are applied as follows:

- Modelled concentrations at 4 m from the road centreline applied directly to the road link for the purpose of compliance with the EU Directive 2008/50/EC.
- Modelled concentration at 20 m for receptors between 0 m and 50 m from the nearest road centreline;
- Modelled concentration at 70 m for receptors between 50 m and 100 m from the nearest road centreline;
- Modelled concentration at 115 m for receptors between 100 m and 150 m from the nearest road centreline; and
- Modelled concentration at 175 m for receptors between 150 m and 200 m from the nearest road centreline.
- 1.2.1.19. The discrete receptor locations were plotted either side of the centre of each road link using a GIS system and added as receptor points in the ADMS modelling system. This arrangement has the potential to be affected by meteorological conditions, therefore the worst-case prediction from either side of the road link was taken forward as the modelled concentration.
- 1.2.1.20. A spatial join was performed on all receptors within 200 m of the affected road link was performed to determine the closest affected road link and thus which concentration should be applied.

Minimising Uncertainty

- 1.2.1.21. Discrepancies may occur between measured and modelled concentrations for several reasons including:
 - Traffic data uncertainties, including estimates of speeds, total flows and proportions of vehicle types;
 - Emission estimates for vehicles using Emission Factors Toolkit v9.0 are based on Defra predictions;
 - Estimates of background concentrations and future trends;
 - The use of meteorological data which is not representative of the application site;
 - NO_x:NO₂ conversion using the Defra conversion tool v7;
 - Known limitations to the ADMS v4.1.1 modelling software, and
 - The precision and accuracy of monitoring methods.
- 1.2.1.22. Disparities between modelling and monitoring results are likely to be a result of a combination of all these aspects.
- 1.2.1.23. A number of steps were taken to either minimise uncertainty in the modelling process or, where this was not possible, to follow a conservative approach to avoid the risk of underprediction of pollutant concentrations.

- Verification is the process by which uncertainties such as those described above are investigated and minimised. Annual mean roadside NO_x concentrations were predicted using the ADMS-Roads modelling software for the derived baseline scenario. A comparison of modelled vs. monitored annual mean roadside NO_x concentrations was undertaken for a large number of NO₂ diffusion tube locations described in Section 1.4. These locations were used as they were considered reflective of the variation in air quality over the area of the affected road links, and traffic data was available from Systra to verify performance.
- Verification zones (Plate 1) were chosen based on the availability of monitoring data, similarity of geographic features (e.g. road type and density, built-up or open areas and presence of AQMAs). Verification zones allow for different adjustment factors to be applied to the model that may better suit the location as opposed to a uniform verification.
- An adjustment factor was derived from the linear interpolation of the monitored NO_x values and modelled NO_x predictions according to the Diffusion Tubes for Ambient NO₂ Monitoring: Practical Guidance for Laboratories and Users guidance document (AEA Energy & Environment, 2008).

- Meteorological sensitivity is considered where dispersion conditions from different years may affect predicted concentrations. Testing for the point source modelling revealed 2014 produced the worst-case model outputs, however traffic data was not provided for a Baseline year. In order to obtain a baseline year for traffic data, the supplied data had to be de-growthed using TEMPro v7. It was considered that it was more appropriate to undertake this operation for the latest year for which ratified monitoring was available (2018) rather than adjusting the data further.
- Due to the differing effects that meteorology might have for receptors on each side an affected link, the concentrations on each side of affected links were calculated, and the highest concentration applied to receptors on both sides of the affected link in order to provide a conservative prediction.
- Background pollutant concentrations were obtained from the Defra Background Air Quality Archive as these were found to provide more conservative estimates than monitoring. Background monitoring was also not available over many areas of the affected road network, therefore for consistency the Defra values were used.
- Vehicle emission standards/EFTs were obtained using the Defra Emissions Factor Toolkit v9.0. The projections for fleet composition and fuel use in EFT v9.0 are based on current predictions and available information derived from the Aristotle University of Thessaloniki COPERT model, which is the accepted standard by EU institutions. There are, however, a number of uncertainties in the data which include:
 - Future fleet mix as a result of commitments such as those from the UK Government to be net carbon neutral by 2050, and to ban the sale of fossilfuelled (petrol and diesel) powered vehicles by 2040;
 - Uncertainty as to the impact on emissions of the introduction of the Worldharmonised Light-duty Test Procedure ('WLTP');
 - The proportion of Euro 6 vehicles in the fleet that were not required to meet the WLTP for which NO_x emissions are underestimated; and
 - Unknown deterioration and failure rates for complex emissions control systems in Euro 6 vehicles.

Considering these factors, and the large number of assumptions and additional local traffic monitoring required in producing a customised COPERT output, the Defra EFT v9.0 remains the best option for representing vehicle emissions.

- Street canyons were derived using the OS Mastermap Topography dataset with the building height attribute applied for all buildings within 15 m of affected links, and the modelled road network exported from the ADMS-roads Mapping tool. These datasets were processed using the CERC ADMS Canyon python tool for ArcGIS and the impact of their use was investigated. The outputs from this tool were found to be highly conservative, creating canyon data where few or no buildings existed on a road link. The model was then run with and without the inputs created by the canyon tool, and the most appropriate result used for the relevant reporting. In the case of general outputs for traffic diversions and construction traffic, more conservative results were found without the application of the canyon tool given the coarse output from the model and minimum modelled distance from the affected link centreline of 20 m. In the case of compliance with the EU Directive 2008/50/EC, the opposite was found to be true where the modelled distance from the affected link centreline was 4 m. Verification factors were derived for the model outputs both with- and without the street canyon module. The model correction factors with the street canyon were generally found to be lower for the six verification zones, however the error within the model was found to be not significantly affected. Sensitive receptor pollutant concentration predictions were made without the use of the complex canyon tool, and predictions for the assessment of compliance with the EU Directive 2008/50/EC were made with the use of the complex canyon tool.
- A Root Mean Squared Error test was applied to the monitored and modelled data used for verification, both before and after correction. Consistently high errors were recorded in the monitored vs modelled data both from the data with and without the street canyon module, suggesting an incompatibility between the type of monitoring undertaken for LAQM purposes where the locations representative of worst exposure are monitored (largely roadside), and the type of monitoring required for model verification purposes where locations representative of more general exposure and network specific background locations would be required. Where the RMSE was changed in an unacceptable manner, i.e. a large increase, then this test was used for the judgement not to apply a correction factor.

1.2.2. DECOMMISSIONING

1.2.2.1. Works for decommissioning are expected to be equivalent to those involved in construction. The effects of sustainable transport policies on traffic flows are not known over the minimum 40-year lifespan of the proposed development, neither are the effects of emissions legislation and improving technology on vehicle emissions.

1.3. BASELINE ENVIRONMENT

1.3.1.LOCAL AIR QUALITY MANAGEMENT

1.3.1.1. The following section provides relevant Local Air Quality Management ('LAQM') information from the affected local authorities in addition to the baseline data provided in Chapter 23 Air Quality.

<u>Havant</u>

1.3.1.2. Within the district of Havant there are no AQMAs relevant to the proposed development described in the 2018 Annual Status Report (Havant Borough Council, 2019). Diffusion tube monitoring results for the 2018 baseline year were obtained directly from the EHO, and the relevant results are shown in Table 2.

Table 3 - Relevant Havant Diffusion Tube Results

ID	Location	x	у	In AQMA?	2018 NO ₂ (μg/m³)
HA8	London Road (Purbrook)	467322	107976	No	27.8
HA10	Ramblers Way	470032	110043	No	21.4
HA25(B)	Stakes Road	468479	107721	No	26.8

1.3.1.3. Section 4 falls wholly within the local authority area, however traffic from sections 1, 2, 3 and 4 are likely to use roads within the local authority area. All results are below 70 % of the annual mean limit value for NO₂.

City of Portsmouth

- 1.3.1.4. There are four AQMAs within the city of Portsmouth that are likely to be affected by traffic as a result of road closures and diversions, and generated construction traffic. These are AQMAs 6, 7, 9 and 11, all of which are declared for exceedances of the NO₂ limit value of 40 µg/m³. The 2019 ASR (Portsmouth City Council, 2019) details that monitored concentrations within the AQMA all continue to exceed the limit value for NO₂ of 40 µg/m³, except for AQMA 9 where the monitored concentration is 37.8 µg/m³. Portsmouth City Council is in the process of reviewing its current Air Quality Action Plan.
- 1.3.1.5. Relevant diffusion tube monitoring data are shown in Table 4.

ID	Location	x	у	In AQMA?	2018 NO₂ (µg/m³)
PO1	Lord Montgomery Way (LMW-FST)	463872	99874	Yes	42.9
PO2	12 Chadderton Gardens (CG-12)	463705	99371	No	17.1
PO3	121A High Street (HS-121A)	463408	99460	Yes	24.1
PO5	119 Whale Island Way (WIW-119)	464230	102194	No	28.1
PO6	88 Stanley Road (SR-88)	464331	102197	No	30.9
PO7	138 Lower Derby Road (LDR-138)	464291	102279	No	27.7
PO8	492 Hawthorn Crescent (HC-492)	466690	104355	No	26.0
PO9	6 Northern Road (NR-6)	465621	105528	No	36.7
PO11	Anchorage Road, Column 6 (AR-Col6)	466869	103457	No	22.9
PO14	4 Merlyn Drive (MD-4)	466109	103736	No	21.7
PO15	29 Milton Road (MR-29)	466120	101324	No	27.6
PO16	Parade Court, London Road (LR-PC)	465474	104205	No	29.6
PO18	4 Milton Road (MR-4)	466097	101332	No	26.0
PO19	7 Velder Avenue (VA-7)	466392	100226	Yes	37.7

ID	Location	x	у	In AQMA?	2018 NO₂ (μg/m³)
PO23	106 Victoria Road North (VRN-106)	464974	99766	No	34.6
PO24	221 Fratton Road (FR-221)	465111	100737	Yes	36.8
PO25	117 Kingston Road (KR-117)	465036	101547	Yes	38.2
PO26	The TAP (PH), London Road (LR-TAP)	464900	101976	Yes	46.0
PO30	Market Tavern (PH), Mile End Road (MER-MT)	464478	101457	Yes	39.2
PO32	Larch Court, Church Road (CR-Corner)	464559	100980	No	31.9
PO34	Sovereign Gate, Commercial Road (CR-UF)	464425	100893	Yes	33.3
PO35	Hampshire Terrace (HT-AM)	463837	99759	No	30.1
PO37	London Road	464925	102129	Yes	40.6
PO38	Gatcombe Park (AURN)	465403	103952	No	18.7
PO39	Burrfields Road	466004	102348	No	34.0
PO40	Mile End Road	464397	101270	Yes	34.0
PO42	Admiral Drake (PH), Kingston Crescent (KC-ADPH)	464552	101940	Yes	38.1
PO43	Vanguard House, Kingston Crescent (KC-VH)	464774	101922	No	32.5
PO48	28 Stamshaw Road East (SR-E28)	464597	102119	No	30.5

ID	Location	x	у	In AQMA?	2018 NO ₂ (µg/m³)
PO53	DEFRA CAQMS, Anglsea Road (AR-DEFRA)	463835	100259	No	30.5
PO56	Gunwharf Road, Column 4 (GWR-Col4)	463261	99782	No	35.1
PO57	23 St Nicolas Street (StNS-23 Formal StJSc-Col7)	463478	99348	No	20.3
PO58	9 St Georges Street (St GS-9)	463487	99659	No	29.3
PO61	1/10 Southwick House Milton Road. On the fence (MR- SH)	466136	100610	No	33.7
PO62	12 Hambrook House Milton Road (MR-HH)	466165	100573	No	22.0
PO63	209 Milton Road (SR-209)	466354	100172	Yes	34.2
PO65	12ooring Way (MW-12)	466681	100373	Yes	28.2
PO66	1 Velder Avenue (VA-1)	466267	100216	Yes	31.9
PO67	23 Velder Avenue (VA-23)	466457	100253	Yes	36.7
PO68	36 Velder Avenue (VA-36)	466501	100277	Yes	36.9
P071	19 Havant Road (HR-19)	465711	105624	No	27.8
P072	60 Northern Road (NR-60)	465657	105577	No	26.5
P073	52 Northern Road (NR-52)	465653	105544	No	27.4
P075	1-6 Chipstead House, Southampton Road (SR-CH)	465618	105619	No	25.7

ID	Location	x	у	In AQMA?	2018 NO₂ (µg/m³)
P076	142 Copnor Road (CR-142)	466002	102053	No	31.3
P077	Copnor School Playground, Copnor Road (CR- School)	466008	102097	No	21.2
P078	3 Goldsmith Avenue (GA-3)	466523	99599	No	25.0
PO86	91 Fawcett Road (FR-91)	465201	99734	No	28.9
PO87	Priory School, Fawcett Road (FR-PSc)	465183	99904	No	27.3
PO90	18 Baffins Road (BR-18)	466095	100813	No	24.0
PO91	3 Baffins Road (BR-3)	466070	100819	No	26.7
PO92	Locksway Road-13 (LR-13)	466525	99736	No	27.3

1.3.1.6. Sections 5, 6, 7, 8, 9 and 10 are located wholly within the local authority area, and section 4 partially within the local authority area. Concentrations recorded at PO1, PO26 and PO37, located inside AQMAs, were above the 40 µg/m³ limit value.

1.3.2. MODEL VERIFICATION

Verification Zone 1

1.3.2.1. The results for verification Zone 1 are shown in Table 5.

Site ID	Total B/G NO ₂	Monitored Total NO ₂	% Diff.	Monitored Total NO _x	Total B/G NO _x	Monitored Road Contributi on NO ₂	Monitored Road Contributi on NO _x	Modelled Road NO _x	Ratio of Monitored Road to Modelled Road
PO1	22.0	42.9	36.4	79.8	34.3	20.9	45.6	16.0	0.4
PO3	22.0	24.1	-1.5	38.4	34.3	2.1	4.2	10.3	2.5
PO5	24.9	28.1	3.6	45.8	39.3	3.2	6.5	16.0	2.5
PO6	24.9	30.9	7.1	51.6	39.3	6.0	12.3	19.3	1.6
PO7	24.9	27.7	10.3	45.1	39.3	2.9	5.8	11.4	2.0
PO23	20.8	34.6	16.2	60.4	31.6	13.8	28.8	22.9	0.8
PO24	21.0	36.8	28.4	65.2	31.9	15.8	33.3	15.1	0.5
PO25	22.6	38.2	24.8	68.3	35.0	15.6	33.3	17.1	0.5
PO26	27.9	46.0	20.7	87.0	46.8	18.1	40.2	25.4	0.6
PO30	27.9	39.2	21.5	70.9	46.8	11.3	24.1	12.9	0.5
PO32	23.7	31.9	-2.6	54.1	37.3	8.2	16.8	25.8	1.5
PO34	23.7	33.3	1.4	57.3	37.3	9.6	20.0	26.2	1.3

Table 5 - Zone 1 Diffusion Tube Verification and Adjustment Factor Derivation

Site ID	Total B/G NO ₂	Monitored Total NO ₂	% Diff.	Monitored Total NO _x	Total B/G NO _x	Monitored Road Contributi on NO ₂	Monitored Road Contributi on NO _x	Modelled Road NO _x	Ratio of Monitored Road to Modelled Road
PO35	22.0	30.1	14.5	50.7	34.3	8.1	16.4	12.8	0.8
PO37	24.9	40.6	22.4	73.1	39.3	15.7	33.8	25.5	0.8
PO40	27.9	34.0	-11.5	59.4	46.8	6.1	12.6	28.4	2.3
PO42	27.9	38.0	8.1	68.4	46.8	10.2	21.6	22.0	1.0
PO43	27.9	32.5	0.6	56.4	46.8	4.6	9.5	16.2	1.7
PO48	24.9	30.5	20.6	50.9	39.3	5.7	11.6	10.2	0.9
PO53	23.9	30.5	0.6	51.8	38.3	6.7	13.6	16.9	1.2
PO56	22.0	35.1	42.8	61.6	34.3	13.1	27.3	1.5	0.1
PO58	22.0	29.3	29.9	49.1	34.3	7.3	14.8	2.4	0.2
PO86	20.4	28.9	28.9	47.9	30.7	8.5	17.2	6.6	0.4
PO87	20.4	27.3	20.4	44.6	30.7	6.9	13.9	8.9	0.6
	Defra Backgroun d maps	LA Diffusion tube data	LAQM.TG(09)	NOx to NO ₂ calculator	Defra Backgroun d maps	Derived (LAQM.TG (09))	Derived (LAQM.TG (09))	ADMS- roads output	Derived (LAQM.TG (09))

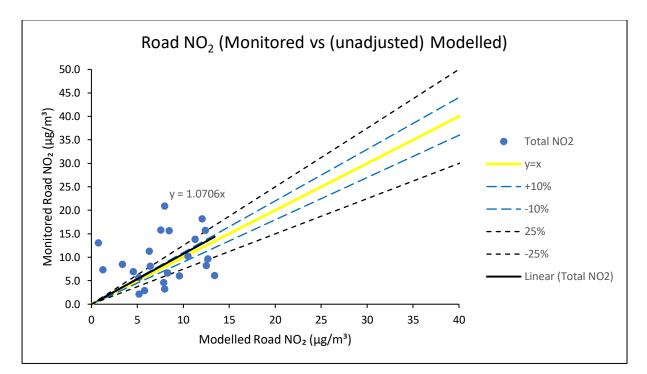


Plate 2 - Zone 1 Graph of Monitored NO₂ against Modelled NO₂ before Adjustment

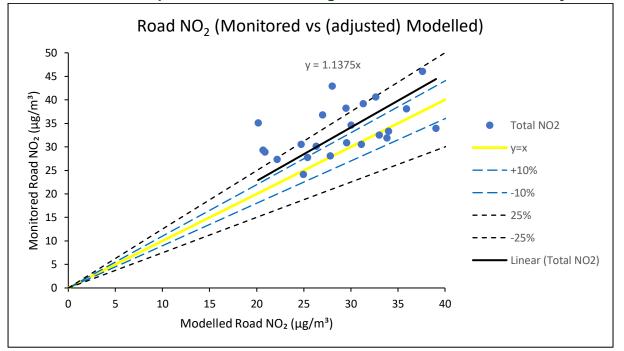


Plate 3 - Zone 1 Graph of Monitored NO₂ against Modelled NO₂ after Adjustment

- 1.3.2.2. An adjustment factor of 1.10 was applied to the model for this verification zone. Plate 2 shows the relationship between monitored and modelled NO₂ with the best-fit line gradient of 1.07x. Following application of the adjustment factor, the relationship was improved as shown in Plate 3, with the best-fit line achieving a gradient of 1.14x. Whilst it is not an improvement in the direct relationship, it brings a greater number of results to within 25% correlation.
- 1.3.2.3. The performance of the model is summarised in Table 6.

Table 6 – Zone 1 Model Performance

Statistic	Results before verification and adjustment	Results after verification and adjustment	Comments
RMSE (µg/m³)	7.28	6.88	Model marginally
Correlation	0.56	0.52	under-predicts after adjustment
Fractional Bias	0.17	0.15	adjustment

1.3.2.4. Table 6 shows that the Root Mean Squared Error of 7.28 μg/m³ is reduced marginally to 6.88 μg/m³. The Fractional Bias shows that the model produces very small under predictions.

Verification Zone 2

1.3.2.5. The results for verification Zone 1 are shown in Table 7.

Site ID	Total B/G NO ₂	Monitore d Total NO ₂	% Diff.	Monitore d Total NO _x	Total B/G NO _x	Monitore d Road Contributi on NO ₂	Monitore d Road Contributi on NO _x	Modelled Road NO _x	Ratio of Monitored Road to Modelled Road
PO15	19.6	27.6	3.6	45.5	29.4	8.0	16.1	17.9	1.1
PO18	19.6	26.0	-5.6	42.1	29.4	6.4	12.7	19.7	1.5
PO19	20.8	37.7	28.1	67.3	31.5	16.9	35.8	18.4	0.5
PO39	19.5	34.0	25.7	59.4	29.2	14.5	30.2	13.6	0.5
PO61	20.8	33.7	15.9	58.2	31.5	12.9	26.8	21.0	0.8
PO62	20.8	22.0	-1.8	33.9	31.5	1.3	2.5	8.8	3.6
PO63	20.8	34.2	17.5	59.3	31.5	13.4	27.9	20.7	0.7
PO65	20.8	28.2	12.9	46.5	31.5	7.5	15.1	13.2	0.9
PO66	20.8	31.9	23.4	54.3	31.5	11.1	22.9	12.9	0.6
PO67	20.8	36.7	28.5	65.1	31.5	16.0	33.7	16.7	0.5
PO68	20.8	36.9	27.1	65.4	31.5	16.1	34.0	17.9	0.5
P076	19.5	31.3	16.7	53.3	29.2	11.8	24.1	15.2	0.6

Table 7 - Zone 2 Diffusion Tube Verification and Adjustment Factor Derivation

Site ID	Total B/G NO ₂	Monitore d Total NO ₂	% Diff.	Monitore d Total NO _x	Total B/G NO _x	Monitore d Road Contributi on NO ₂	Monitore d Road Contributi on NO _x	Modelled Road NO _x	Ratio of Monitored Road to Modelled Road
P077	19.5	21.2	-12.3	32.6	29.2	1.7	3.4	10.7	3.1
P078	19.5	25.0	32.6	40.0	29.0	5.6	11.1	1.6	0.1
PO90	20.8	24.0	8.0	37.8	31.5	3.2	6.3	8.1	1.3
PO91	20.8	26.7	17.4	43.3	31.5	5.9	11.8	8.0	0.7
PO92	19.5	27.3	34.5	44.6	29.0	7.8	15.7	3.5	0.2
	Defra Background maps	LA Diffusion tube data	LAQM.TG(09)	NOx to NO ₂ calculator	Defra Background maps	Derived (LAQM.TG(09))	Derived (LAQM.TG(09))	ADMS-roads output	Derived (LAQM.TG(09))

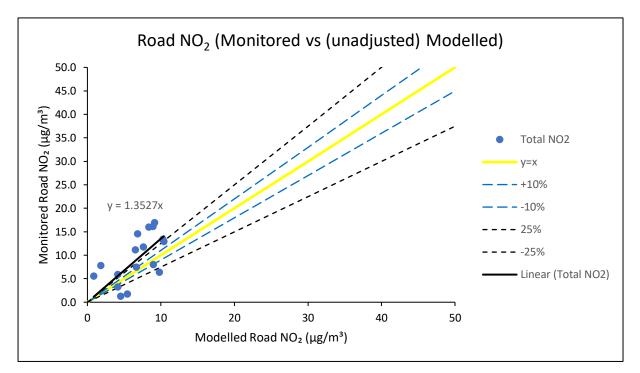
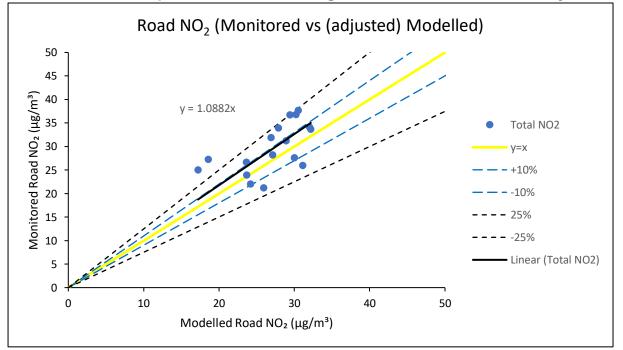



Plate 4 - Zone 2 Graph of Monitored NO₂ against Modelled NO₂ before Adjustment

Plate 5 - Zone 2 Graph of Monitored NO₂ against Modelled NO₂ after Adjustment

- 1.3.2.6. An adjustment factor of 1.4 was applied for verification Zone 2. Plate 4 shows the relationship between monitored and modelled NO₂ with the best-fit line gradient of 1.35x. Following application of the adjustment factor, the relationship was improved as shown in Plate 3, with the best-fit line achieving a gradient of 1.09x. This is an improvement in the direct relationship between modelled and monitored total NO₂ and brings the majority of results within 25 %.
- 1.3.2.7. The performance of the model is summarised in Table 8.

Table 8 - Zone 2 Model Performance

Statistic	Results before verification and adjustment	Results after verification and adjustment	Comments
RMSE (µg/m³)	6.64	5.02	Model marginally
Correlation	0.59	0.60	under-predicts after adjustment
Fractional Bias	0.19	0.09	adjustment

1.3.2.8. Table 8 shows a reduction of 1.62 µg/m³ in the model error. The correlation coefficient improves by 0.01, which cannot be considered statistically significant, however the 0.1 improvement of the fractional bias means the rate of under-prediction is slightly reduced by model correction.

Verification Zone 3

1.3.2.9. The results for verification Zone 3 are shown in Table 9.

Site ID	Total B/G NO ₂	Monitore d Total NO ₂	% Diff.	Monitore d Total NO _x	Total B/G NO _x	Monitore d Road Contributi on NO ₂	Monitore d Road Contributi on NO _x	Modelled Road NO _x	Ratio of Monitore d Road to Modelled Road
PO16	24.3	29.6	-5.4	48.2	37.4	5.3	10.8	28.3	2.6
	Defra Backgroun d maps	LA Diffusion tube data	LAQM.TG (09)	NOx to NO ₂ calculator	Defra Backgroun d maps	Derived (LAQM.T G(09))	Derived (LAQM.T G(09))	ADMS- roads output	Derived (LAQM.T G(09))

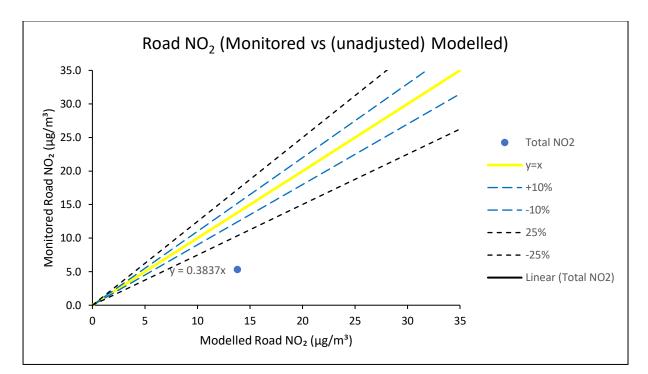


Plate 6 - Zone 3 Graph of Monitored NO₂ against Modelled NO₂ before Adjustment

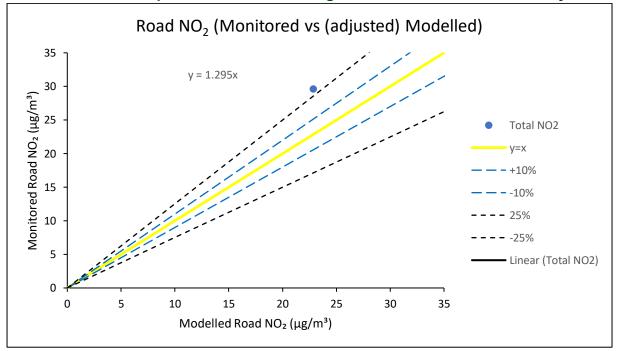


Plate 7 - Zone 3 Graph of Monitored NO₂ against Modelled NO₂ after Adjustment

- 1.3.2.10. An adjustment factor of 0.38 was applied for this verification zone. Plate 6 shows the relationship between monitored and modelled NO₂ with the best-fit line gradient of 0.38x. Following application of the adjustment factor, the relationship was improved as shown in Plate 7, with the best-fit line achieving a gradient of 1.3x. This brings the relationship between monitored and modelled NO₂ closer to the 25 % relationship.
- 1.3.2.11. The performance of the model is summarised in Table 10.

Statistic	Results before verification and adjustment	Results after verification and adjustment	Comments
RMSE (µg/m³)	1.59	6.74	Model marginally
Correlation	-	-	under-predicts after adjustment
Fractional Bias	-0.05	0.26	aujustment

Table 10 - Zone 3 Model Performance

- 1.3.2.12. Table 10 that despite an improvement in the relationship between monitored and modelled NO₂, there is a marked increase in the error in the model of 5.15 μg/m³. A correlation coefficient is not possible as this zone only uses a single diffusion tube monitoring point.
- 1.3.2.13. The fractional bias rate shows that the model moves from a slight over-prediction to a slight under-prediction.
- 1.3.2.14. Given the marked increase in the error following correction, the uncorrected model output was reported for this zone.

Verification Zone 4

1.3.2.15. The results for verification Zone 4 are shown in Table 11.

Site ID	Total B/G NO ₂	Monitore d Total NO ₂	% Diff.	Monitore d Total NO _x	Total B/G NO _x	Monitore d Road Contributi on NO ₂	Monitore d Road Contributi on NO _x	Modelled Road NO _x	Ratio of Monitore d Road to Modelled Road
PO9	20.9	36.7	35.6	64.7	31.3	15.8	33.4	11.9	0.4
P071	20.9	27.8	23.5	45.2	31.3	6.9	13.9	7.0	0.5
P072	20.9	26.5	-13.3	42.5	31.3	5.6	11.3	25.3	2.2
P073	20.9	27.4	0.0	44.4	31.3	6.5	13.2	19.6	1.5
P075	20.9	25.7	18.6	40.9	31.3	4.9	9.7	6.4	0.7
	Defra Backgroun d maps	LA Diffusion tube data	LAQM.TG (09)	NOx to NO ₂ calculator	Defra Backgroun d maps	Derived (LAQM.T G(09))	Derived (LAQM.T G(09))	ADMS- roads output	Derived (LAQM.T G(09))

Table 11 - Zone 4 Diffusion Tube Verification and Adjustment Factor Derivation

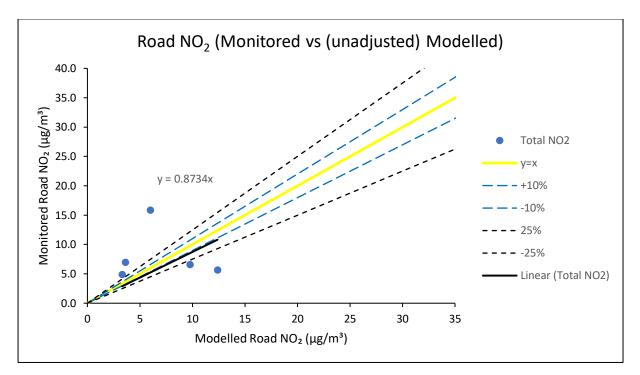


Plate 8 - Zone 4 Graph of Monitored NO₂ against Modelled NO₂ before Adjustment

Plate 9 - Zone 4 Graph of Monitored NO₂ against Modelled NO₂ after Adjustment

October 2020

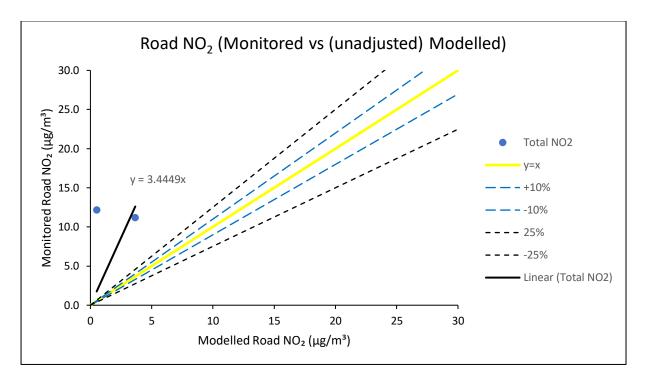
- 1.3.2.16. An adjustment factor of 0.88 was applied for this verification zone. Plate 8 shows the relationship between monitored and modelled NO₂ with the best-fit line gradient of 0.87x. Following application of the adjustment factor, the relationship was changed to 1.19x as shown in Plate 9. Whilst not an improvement in the direct relationship, a larger number of points are brought within the 25 % relationship between monitored and modelled NO₂.
- 1.3.2.17. The performance of the model is summarised in Table 12.

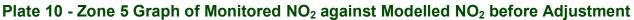
Table 12 - Zone 4 Model Performance

Statistic	Results before verification and adjustment	Results after verification and adjustment	Comments
RMSE (µg/m³)	7.05	7.36	Model marginally
Correlation	0.13	0.13	under-predicts after adjustment
Fractional Bias	0.16	0.19	adjustment

1.3.2.18. Table 12 shows a slight increase in the model error of 0.31 µg/m³. The correlation coefficient improves is unchanged, and the fractional bias shows a slight increase in the tendency of the model to under-predict.

Verification Zone 5


1.3.2.19. The results for verification Zone 5 are shown in Table 13.



Site ID	Total B/G NO ₂	Monitore d Total NO ₂	% Diff.	Monitore d Total NO _x	Total B/G NO _x	Monitore d Road Contributi on NO ₂	Monitore d Road Contributi on NO _x	Modelled Road NO _x	Ratio of Monitore d Road to Modelled Road
HA8	15.7	27.8	48.1	46.7	22.3	12.2	24.4	1.0	0.0
HA25 (B)	15.7	26.8	31.5	44.6	22.4	11.2	22.2	7.0	0.3
	Defra Backgroun d maps	LA Diffusion tube data	LAQM.TG (09)	NOx to NO ₂ calculator	Defra Backgroun d maps	Derived (LAQM.T G(09))	Derived (LAQM.T G(09))	ADMS- roads output	Derived (LAQM.T G(09))

Table 13 - Zone 5 Diffusion Tube Verification and Adjustment Factor Derivation

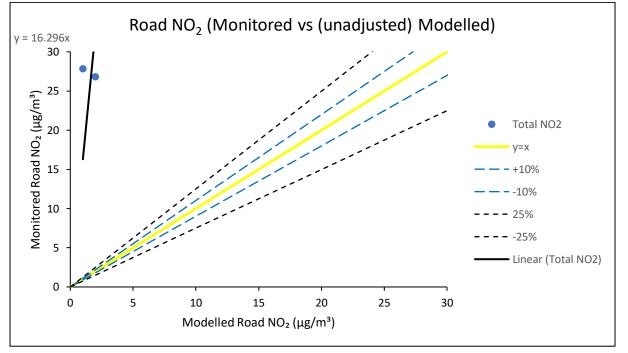


Plate 11 - Zone 5 Graph of Monitored NO₂ against Modelled NO₂ after Adjustment

1.3.2.20. An adjustment factor of 3.58 was applied for verification Zone 5. Plate 10 shows the relationship between monitored and modelled NO₂ with the best-fit line gradient of 0.87x. Following application of the adjustment factor, the relationship was changed to 1.19x as shown in Plate 11. Whilst not an improvement in the direct relationship, a larger number of points are brought within the 25 % relationship between monitored and modelled NO₂. The performance of the model is summarised in Table 14.

Statistic	Results before verification and adjustment	Results after verification and adjustment	Comments
RMSE (µg/m³)	11.19	8.55	Model marginally
Correlation	1.0	1.0	under-predicts after adjustment
Fractional Bias	0.50	0.24	aujustment

Table 14 - Zone 5 Model Performance

1.3.2.21. Table 14 shows large improvement in the model error of 2.64 µg/m³. The correlation coefficient improves is unchanged at 1.0, and the fractional bias shows a slight reduction in the tendency of the model to under-predict.

Verification Zone 6

1.3.2.22. The results for verification Zone 6 are shown in Table 15.

Site ID	Total B/G NO ₂	Monitored Total NO ₂	% Diff.	Monitored Total NO _x	Total B/G NO _x	Monitored Road Contributi on NO ₂	Monitored Road Contributi on NO _x	Modelled Road NO _x	Ratio of Monitored Road to Modelled Road
HA10	15.8	21.4	15.4	33.2	22.4	5.6	10.8	9.8	0.9
PO8	24.8	26.0	-13.4	41.1	38.8	1.1	2.2	20.0	8.9
	Defra Backgroun d maps	LA Diffusion tube data	LAQM.TG(09)	NOx to NO ₂ calculator	Defra Backgroun d maps	Derived (LAQM.TG (09))	Derived (LAQM.TG (09))	ADMS- roads output	Derived (LAQM.TG (09))

Table 15 - Zone 6 Diffusion Tube Verification and Adjustment Factor Derivation

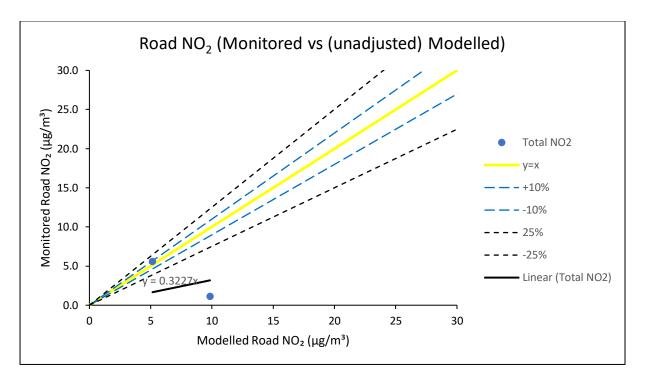


Plate 12 - Zone 6 Graph of Monitored NO₂ against Modelled NO₂ before Adjustment

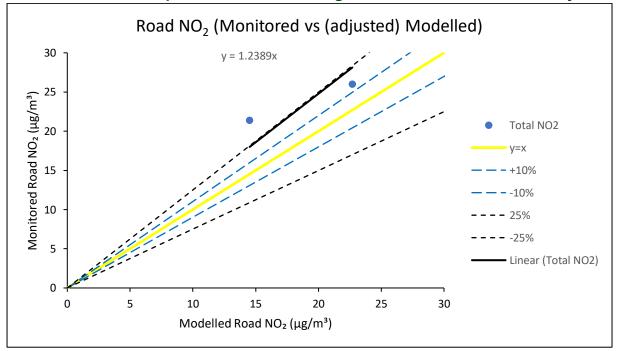


Plate 13 - Zone 6 Graph of Monitored NO₂ against Modelled NO₂ after Adjustment

- 1.3.2.23. An adjustment factor of 0.31 was applied for this verification zone. Plate 12 shows the relationship between monitored and modelled NO₂ with the best-fit line gradient of 0.32x. Following application of the adjustment factor, the relationship was improved to 1.24x as shown in Plate 13.
- 1.3.2.24. The performance of the model is summarised in Table 16.

Table 16 - Zone 6 Model Performance

Statistic	Results before verification and adjustment	Results after verification and adjustment	Comments
RMSE (µg/m³)	3.38	5.36	Model marginally
Correlation	1	1	under-predicts after adjustment
Fractional Bias	0.00	0.24	aujustment

- 1.3.2.25. Table 16 shows an increase in the model error from 3.38 μg/m³ to 5.36 μg/m³. The correlation coefficient shows at 1:1 correlation, and the fractional bias shows a slight increase in the tendency of the model to under-predict.
- 1.3.2.26. Given the increase in the model error and the increase in the tendency of the model to under-predict, the correction factor was not applied to this verification zone and the uncorrected model output was reported.

Verification Summary

- 1.3.2.27. The verification figures presented here are for the modelled pollutant predictions resulting from the ADMS-Roads output run without the complex canyon module. The results for the representative receptors from this arrangement were found to represent the worst-case predictions.
- 1.3.2.28. Verification for the assessment of Compliance with the EU Directive 2008/50/EC was undertaken using the predicted outputs from the ADMS-Roads model that included the complex canyon module. The verification factors are shown in Table 46 together with those run without the canyon module.

Table 17 - Comparison of Correction Factors With- and Without the Complex Canyon Module

Verification Zone	Factor with complex canyon module	Factor without complex canyon module
1	0.81	1.10
2	1.09	1.40
3	0.33	0.38

Verification Zone	Factor with complex canyon module	Factor without complex canyon module
4	0.83	0.88
5	2.80	3.58
6	0.31	0.31

1.3.2.29.

None of the adjustment factors were found to be excessive, with the highest factor being 3.58 in Zone 5, however the RMSE model performance metric in the model for all verification zones (Table 35, Table 37, Table 39, Table 41, Table 43 and Table 45) was found to be consistently higher than the recommended 10 % of the objective value of 40 μ g/m³, but within 25 % of the objective for the purposes of modelling (Department for Environment, Food and Rural Affairs, 2009). Whilst this was the case, a number of individual diffusion tube results remained outside of the 25 % bracket. This is suspected to be as a result of the inherent difference in the requirements of monitoring for LAQM purposes and for modelling purposes.

13230 It is the case that no project specific monitoring programme was undertaken for this project. Given the high volume of diffusion tubes covering the affected road network this was not considered to be necessary. However, these diffusion tubes are placed by local authorities on the basis of monitoring for LAQM purposes and are typically located in the areas of worst-case exposure and as such may be located at complex junctions or areas subject to multiple large emission sources. This type of monitoring is not the most relevant type of monitoring that would be required for model verification, but the assessment has used the data that was available. LAQM monitoring has the capability to skew results due precisely to the objective of monitoring for the worst-case exposure, whereas monitoring for the purpose of model verification has the objective of looking for the most representative exposure over a larger area in order to accurately predict at the largest number of modelled receptors. Air quality models can be refined, but typically perform poorly in highly complex situations or close to high emission sources of pollution. Where complex situations exist, and a proportional approach allows, more complex modelling such as Computational Fluid Dynamics can be undertaken. For this reason, in an area as complex and highly populated as the south of England, and especially the City of Portsmouth where a large number of complex situations are likely to exist, there are likely to be a number of areas where model performance may be challenged.

1.3.2.31. Table 18 provides a summary of the resulting RMSE for each zone and justification for the results presented.

Verification Zone	Before adjustment	After adjustment	Results reported	Justification
1	7.28	6.88	Adjusted	RMSE improvement
2	6.64	5.02	Adjusted	RMSE improvement
3	1.59	6.74	Unadjusted	RMSE deterioration
4	7.05	7.36	Adjusted	RMSE improvement
5	11.19	8.55	Adjusted	RMSE improvement
6	3.38	5.36	Unadjusted	RMSE deterioration

Table 18 - Comparison of RMSE for each verification zone

1.3.2.32. The implications of the model performance metric data on the modelled predictions has been considered in the judgement of significance for the Proposed Development.

1.4. **PREDICTED IMPACTS**

1.4.1. DIVERSION TRAFFIC

Construction Stage

Embedded Mitigation

- 1.4.1.1. Embedded mitigation is described in the Construction Traffic Management Plan ('CTMP'), and includes the following:
 - Temporary traffic signals to be used where lane closures or partial carriageway closure is required. during peak times the signals will be manually adjusted to ensure delays are kept to a minimum;
 - Road closures may be required where the highway is of insufficient width to accommodate works and have traffic continue to flow at a safe distance. Where this is required diversion routes will be agreed with the local highways authority; and

• Construction hours will be scheduled to avoid peak times, especially where schools are in the immediate vicinity of works, and to avoid particular major scheduled events.

Impacts

1.4.1.2. The overall impacts for the DS1 scenario are presented in Figure 23.6, Figure 23.7 and Figure 23.10 and for the DS2 scenario in Figure 23.9, Figure 23.8 and Figure 23.11.

Verification Zone 1

Verification Zone 1 Receptors

1.4.1.3. Within this Verification Zone, the number of impacted receptors is shown in Table 19.

Table 19 - Impacted Receptors in Verification Zone 1

Туре	Receptor Count
Residential	29,424
Commercial	1,719
Community	176
Military	7
Total Number of Receptors	31,326

1.4.1.4. Within the numbers of receptors shown in Table 19, there are receptors with particular sensitivity, as shown in Table 20.

Table 20 - Particularly Sensitive Receptors in Verification Zone 1

Sensitive Receptor	Receptor Count
Schools	80
Medical	33
Hospice	0
Sheltered Accommodation	0
Care Home	12

Verification Zone 1 Results

1.4.1.5. During the construction stage a summary of the results for road closure and diversion traffic for the DS1 scenario are shown in Table 21.

		Construction Scenario DS1 2			
Pollutant		NO ₂	PM ₁₀	PM _{2.5}	
Annual Mean Li	mit Value (µg/m³)	40	40	25	
	DM (2022) Maximum Modelled Concentration (µg/m ³)	48.2	23.6	14.6	
Summary Results	DS1 (2022) Maximum Modelled Concentration (µg/m³)	48.3	23.6	14.6	
	Removed Exceedances	0	0	0	
	New Exceedances	0	0	0	
	Improvement in Concentration	798	221	277	
Total Number of Properties	No Change in Concentration	15,237	26,497	30,106	
orriopenies	Deterioration in Concentration	15,291	4,608	943	
Do Something-	Maximum Improvement (µg/m³)	0.2	0.1	0.1	
Do Minimum Annual Mean Change (µg/m³)	Maximum Deterioration (µg/m³)	0.6	0.2	0.1	

Table 21 – Non-construction Related Traffic Assessment Results for the Do-Something Scenario 1 (2026) for Verification Zone 1

- 1.4.1.6. The summary results in Table 21 show that there is a deterioration of $0.1 \ \mu g/m^3$ in the highest predicted concentration at receptors within Verification Zone 1 for NO₂ in the DS1 scenario. The maximum DS1 concentration of 48.3 $\mu g/m^3$ is 121% of the objective against an exceedance of similar magnitude in the DM scenario. Figure 23.7 Sheet 1 should be compared with Figure 23.6 Sheet 1 for a comparison of the DM against the DS1 scenario. There are imperceptible changes in the highest predicted concentrations for PM₁₀ and PM_{2.5}.
- 1.4.1.7. The highest predicted concentration of 48.3 µg/m³ for NO₂ under the DS1 scenario. occurs at high occupancy residential receptors on Old Commercial Street and Grafton Street, closest to the M275 and is due to the proximity of the receptors to high traffic flows and large, complex junctions.
- 1.4.1.8. The highest predicted deterioration of 0.6 μ g/m³ in concentrations of NO₂ occurs at high occupancy residential receptors on Percy Chandler Street where the DM concentration is 15.5 μ g/m³.

- 1.4.1.9. The highest predicted improvement of $0.2 \mu g/m^3$ in concentrations of NO₂ occur along Osier Way and Harbour Way.
- 1.4.1.10. For PM₁₀ and PM_{2.5}, concentrations are not predicted to change at most of the receptors assessed for the DS1 scenario. However, more receptors will experience a deterioration than an improvement in this scenario for these pollutants. For NO₂, a roughly equal number of receptors will experience either no change in concentrations or a deterioration in concentration. Whilst some properties are shown to experience a deterioration in concentrations of all pollutants, the highest predicted improvement is of a lower magnitude than the highest predicted improvement for NO₂ and PM₁₀, whilst the maximum improvement and maximum deterioration are equal for PM_{2.5}.
- 1.4.1.11. A summary of the results for diversions and road closures for the DS2 scenario are shown in Table 22.

		Construct	ion Scenari	o DS2 2026
Pollutant		NO ₂	PM ₁₀	PM _{2.5}
Annual Mean Lim	it Value (µg/m³)	40	40	25
	DM (2026) Maximum Modelled Concentration	48.2	23.6	14.6
Summary Results	DS2 (2026) Maximum Modelled Concentration	48.4	23.6	14.6
	Removed Exceedances	0	0	0
	New Exceedances	0	0	0
	Improvement in Concentration	171	149	0
Total Number of Properties	No Change in Concentration	26,663	29,384	31,043
Topenies	Deterioration in Concentration	4,492	1,793	283
Do Something-	Maximum Improvement	0.1	0.1	0
Do Minimum Annual Mean Change (µg/m³)	Maximum Deterioration	0.7	0.1	0.1

Table 22 – Non-construction Related Traffic Assessment Results for the Do-Something Scenario 2 (2026) for Verification Zone 1

- 1.4.1.12. The summary results in Table 22 show that there is a deterioration of 0.2 μg/m³ in the highest predicted concentration at receptors within the study area for NO₂ in the DS2 scenario. The maximum DS2 concentration of 48.4 μg/m³ is 121% of the objective. Figure 23.8 Sheet 1 should be compared with Figure 23.6 Sheet 1 for a comparison of the DM against the DS2 scenario. There is a no change in the highest predicted concentrations for PM₁₀ and PM_{2.5}.
- 1.4.1.13. The highest predicted concentration of 48.4 μg/m³ for NO₂ under the DS1 scenario occurs at high occupancy residential receptors on Old Commercial Street and Grafton Street, closest to the M275.
- 1.4.1.14. The highest predicted deterioration of 0.7 μ g/m³ in concentrations of NO₂ occurs at high occupancy residential receptors on Percy Chandler Street where the DM concentration is 15.8 μ g/m³.
- 1.4.1.15. The highest predicted improvement of 0.1 μ g/m³ in concentrations of NO₂ occur along Osier Way and Harbour Way, closest to the M275.
- 1.4.1.16. For NO₂, PM₁₀ and PM_{2.5}, concentrations are not predicted to change at most of the receptors assessed for the DS1 scenario. However, more receptors will experience a deterioration than an improvement in this scenario DS2. Whilst some properties are shown to experience a deterioration in concentrations of all pollutants, the highest predicted deterioration is of a lower magnitude than the highest predicted improvement for NO₂ PM₁₀ and PM_{2.5}.
- 1.4.1.17. NO₂ concentrations at a selection of representative receptors is shown in Table 23, consisting of high sensitivity receptors highlighted in Table 23, Figure 23.7 Sheet 1 and Figure 23.8 Sheet 1, and within 50 m of the road centreline, and those receptors predicted to experience the highest concentrations or largest changes (> ±0.2 µg/m³).

Table 23 - Verification Zone 1 Representative Receptor Selection

		NO ₂ Concentration (µg/m ³)						In
Receptor	DM	DS1	DS1 Change	IAQM	DS2	DS2 Change	IAQM	In AQMA
I Glancey, 108 New Road, Portsmouth	20.8	21	0.2	Negligible Adverse	20.8	0.0	Negligible Adverse	No
Meadow House Rest Home, 47-51, 47 Stubbington Avenue, Portsmouth	19.8	19.6	-0.2	Negligible Beneficial	19.8	0.0	Negligible Beneficial	Yes
Stubbington Avenue Dental Practice, Ring Baxter & Reid, 12 Stubbington Avenue, Portsmouth	19.8	19.6	-0.2	Negligible Beneficial	19.8	0.0	Negligible Beneficial	Yes
Good Manors Day Nursery, Good Manors Day Nursery, Stubbington Lodge, 45 Stubbington Avenue, Portsmouth	19.8	19.6	-0.2	Negligible Beneficial	19.8	0.0	Negligible Beneficial	Yes
The Harbour School Stamshaw, Ranelagh Road, Portsmouth	46.5	46.8	0.3	Moderate Adverse	47.2	0.7	Substanti al Adverse	No
24 Grafton Street, Portsmouth	48.2	48.3	0.1	Moderate Adverse	48.4	0.2	Moderate Adverse	Yes

		NO ₂ Concentration (µg/m ³)						
Receptor	DM	DS1	DS1 Change	IAQM	DS2	DS2 Change	IAQM	In AQMA
110 Grafton Street, Portsmouth	48.2	48.3	0.1	Moderate Adverse	48.4	0.2	Moderate Adverse	Yes
401j, Old Commercial Road, Portsmouth	48.2	48.3	0.1	Moderate Adverse	48.4	0.2	Moderate Adverse	Yes
St. John Ambulance, St John Ambulance, 406- 414, 406 Old Commercial Road, Portsmouth	48.2	48.3	0.1	Moderate Adverse	48.4	0.2	Moderate Adverse	Yes
14 Harbour Way, Portsmouth	45	45.1	0.1	Moderate Adverse	45.1	0.1	Moderate Adverse	No
4 Osier Close, Portsmouth	45	45.1	0.1	Moderate Adverse	45.1	0.1	Moderate Adverse	No
Flat 5, Horndean House, Percy Chandler Street, Portsmouth	29.5	30.1	0.6	Slight Adverse	29.6	0.1	Negligible Adverse	No
Flat 1, Horndean House, Percy Chandler Street, Portsmouth	29.5	30.1	0.6	Slight Adverse	29.6	0.1	Negligible Adverse	No

Verification Zone 2

Verification Zone 2 Receptors

1.4.1.18. Within this Verification Zone, the number of impacted receptors is shown in Table 24.

Table 24 - Impacted Receptors in Verification Zone 2

Туре	Receptor Count		
Residential	9,206		
Commercial	410		
Community	55		
Military	0		
Total Number of Receptors	9,671		

1.4.1.19.

Within the numbers of receptors shown in Table 24, there are receptors with particular sensitivity, as shown in Table 25.

Table 25 - Particularly Sensitive Receptors in Verification Zone 2

Sensitive Receptor	Receptor Count
Schools	14
Medical	22
Hospice	4
Sheltered Accommodation	1
Care Home	42

Verification Zone 2 Results

1.4.1.20. During the construction stage a summary of the results for road closure and diversion traffic for the DS1 scenario are shown in Table 26.

Table 26 – Non-construction Related Traffic Assessment Results for the Do-Something Scenario 1 (2026) for Verification Zone 2

		Construction Scenario DS1 202			
Pollutant		NO ₂	PM 10	PM _{2.5}	
Annual Mean Li	Annual Mean Limit Value (µg/m³)		40	25	
Summary ResultsDM (2026) Maximum Modelled Concentration		26.7	20.8	13.5	

			on Scenario	DS1 2026
Pollutant		NO ₂	PM ₁₀	PM _{2.5}
Annual Mean Li	mit Value (µg/m³)	40	40	25
	DS1 (2026) Maximum Modelled Concentration	26.8	20.8	13.5
	Removed Exceedances	0	0	0
	New Exceedances	0	0	0
	Improvement in Concentration	3,312	2,619	556
Total Number of Properties	No Change in Concentration	2,503	4,696	7,819
orropenies	Deterioration in Concentration	3,856	2,356	1,296
Do Something-	Maximum Improvement	1.2	0.3	0.1
Do Minimum Annual Mean Change (µg/m³)	Maximum Deterioration	0.7	0.2	0.1

1.4.1.21. The summary results in Table 26 show that there is a negligible deterioration of 0.1 μ g/m³ in the highest predicted concentration at receptors within Verification Zone 2 for NO₂ in the DS1 scenario. The maximum DS1 concentration of 26.8 μ g/m³ is significantly under the objective. Figure 23.7 Sheet 2 should be compared with Figure 23.6 Sheet 2 for a comparison of the DM against the DS1 scenario. There is no change in the highest predicted concentrations for PM₁₀ and PM_{2.5}.

- 1.4.1.22. The highest predicted concentration of 26.8 μg/m³ for NO₂ under the DS1 scenario occurs at seven residential receptors and two commercial receptors at the junction of Baffins Road and Hayling Avenue.
- 1.4.1.23. The highest predicted deterioration of 0.7 μ g/m³ in concentrations of NO₂ occurs at a receptors on Folkstone Road, where the DM concentration is 24.2 μ g/m³.
- 1.4.1.24. The highest predicted improvement of 1.2 μg/m³ in concentrations of NO₂ occurs at high density residential receptors at the junction of Eastern Road and Hayling Avenue.

- 1.4.1.25. For PM₁₀ and PM_{2.5}, concentrations are not predicted to change at the majority of the receptors assessed for the DS1 scenario. For NO₂, a minority of receptors are predicted to experience no change in concentrations, with greater numbers predicted to experience either an improvement or a deterioration. For NO₂ and PM_{2.5}, more receptors are predicted to experience a deterioration, whilst for PM₁₀ more receptors are predicted to experience an improvement in concentrations. Overall, the level of maximum improvement is greater than the maximum deterioration, except for PM_{2.5} where they are equal.
- 1.4.1.26. A summary of the results for diversions and road closures for the DS2 scenario are shown in Table 27.

	Construction Scenario DS2			DS2 2026
Pollutant		NO ₂	PM ₁₀	PM _{2.5}
Annual Mean Li	mit Value (µg/m³)	40	40	25
	DM (2026) Maximum Modelled Concentration	26.7	20.8	13.5
Summary Results	DS2 (2026) Maximum Modelled Concentration	26.9	20.9	13.5
	Removed Exceedances	0	0	0
	New Exceedances	0	0	0
	Improvement in Concentration	1,287	908	35
Total Number of Properties	No Change in Concentration	5,772	7,615	8,695
orropentes	Deterioration in Concentration	2,612	1,148	941
Do Something-	Maximum Improvement	0.2	0.1	0.1
Do Minimum Annual Mean Change (µg/m³)	Maximum Deterioration	0.2	0.1	0.1

Table 27 – Non-construction Related Traffic Assessment Results for the Do Something Scenario 2 (2026) for Verification Zone 2

- 1.4.1.27. The summary results in Table 27 show that there is predicted to be a negligible deterioration of 0.2 μ g/m³ in the highest predicted concentration within the study area for NO₂ in the DS2 scenario. Figure 23.8 Sheet 2 should be compared with Figure 23.6 Sheet 2 for a comparison of the DM against the DS2 scenario. There is a negligible 0.1 μ g/m³ increase in the highest predicted concentration of PM₁₀.
- 1.4.1.28. The highest predicted concentration of 26.9 μg/m³ for NO₂ under the DS2 scenario occurs at seven residential receptors and two commercial receptors at the junction of Baffins Road and Hayling Avenue.
- 1.4.1.29. The highest predicted deterioration of 0.2 μg/m³ in concentrations of NO₂ occurs at receptors at the junction of Baffins Road and Hayling Avenue where the DM concentrations is 27 μg/m³, and on Bowler Avenue where the DM concentrations is 24.3μg/m³.
- 1.4.1.30. The highest predicted improvement of 0.2 μg/m³ in concentrations of NO₂ occurs at high density residential receptors at the junction of Eastern Road and Hayling Avenue.
- 1.4.1.31. For all modelled pollutants, concentrations are not predicted to change at the majority of receptors assessed for the DS2 scenario. A larger number of receptors are predicted to experience a deterioration in ambient pollutant concentrations than an improvement.
- 1.4.1.32. NO₂ concentrations at a selection of representative receptors is shown in Table 28 consisting of high sensitivity receptors highlighted in Table 28, Figure 23.7 Sheet 2 and Figure 23.8 Sheet 2, and within 50 m of the road centreline, and those receptors predicted to experience the highest concentrations or largest changes (> ±0.2 µg/m³).

Table 28 - Verification Zone 2 Representative Receptor Selection

		NO ₂ Concentration (µg/m ³)						In
Receptor	DM	DS1	DS1 Change	IAQM	DS2	DS2 Change	IAQM	AQMA
My Dentist, B P Henning Dental Surgeon, 310 Chichester Road, Portsmouth	23	23.2	0.2	Negligible Adverse	23.1	0.1	Negligible Adverse	No
Doctors Surgery, 111 Copnor Road, Portsmouth	23	23.2	0.2	Negligible Adverse	23.1	0.1	Negligible Adverse	No
Mary Rose Manor, Copnor Road, Portsmouth	20.9	21.3	0.4	Negligible Adverse	21	0.1	Negligible Adverse	No
Shearwater, 18 Moorings Way, Southsea	21.3	21.2	-0.1	Negligible Beneficial	21.2	-0.1	Negligible Beneficial	Yes
Portsmouth College, Tangier Road, Portsmouth	16	15.8	-0.2	Negligible Beneficial	15.9	-0.1	Negligible Beneficial	No
Tangier Road Children's Home, 265-267, 265 Tangier Road, Portsmouth	16	15.8	-0.2	Negligible Beneficial	15.9	-0.1	Negligible Beneficial	No
94 Eastern Road, Portsmouth	23.1	22.7	-0.4	Negligible Beneficial	23	-0.1	Negligible Beneficial	Yes
5 Hayling Avenue, Portsmouth	26.7	26.8	0.1	Negligible Adverse	26.9	0.2	Negligible Adverse	No

Receptor		NO ₂ Concentration (µg/m ³)						lu .
		DS1	DS1 Change	IAQM	DS2	DS2 Change	IAQM	In AQMA
3 Plover Reach, Southsea	25.7	25.2	-0.5	Negligible Beneficial	25.6	-0.1	Negligible Beneficial	Yes
18 The Haven, Southsea	25.7	25.2	-0.5	Negligible Beneficial	25.6	-0.1	Negligible Beneficial	Yes

Verification Zone 3

Verification Zone 3 Receptors

1.4.1.33. Within Verification Zone 3, the number of impacted receptors is shown in Table 29.

Table 29 - Impacted Receptors in Verification Zone 3

Туре	Receptor Count
Residential	2,868
Commercial	398
Community	17
Military	0
Total Number of Receptors	3,283

1.4.1.34. Within the numbers of receptors shown in Table 29, there are receptors with particular sensitivity, as shown in Table 30.

Table 30 - Particularly Sensitive Receptors in Verification Zone 3

Sensitive Receptor	Receptor Count
Schools	10
Medical	0
Hospice	0
Sheltered Accommodation	0
Care Home	82

Verification Zone 3 Results

1.4.1.35. During the construction stage a summary of the results for road closure and diversion traffic for the DS1 scenario are shown in Table 31.

		Constructio	n Scenario	DS1 2026
Pollutant		NO ₂	PM ₁₀	PM _{2.5}
Annual Mean Lir	nit Value (µg/m³)	40	40	25
	DM (2026) Maximum Modelled Concentration	32.3	22.1	12.8
Summary Results	DS1 (2026) Maximum Modelled Concentration	32.7	22.2	12.9
	Removed Exceedances	0	0	0
	New Exceedances	0	0	0
	Improvement in Concentration	152	100	109
Total Number of Properties	No Change in Concentration	1,250	2,651	2,844
orropenies	Deterioration in Concentration	1,881	532	330
Do Something-	Maximum Improvement	0.7	0.3	0.1
Do Minimum Annual Mean Change (µg/m³)	Maximum Deterioration	0.5	0.2	0.1

Table 31 – Non-construction Related Traffic Assessment Results for the Do-Something Scenario 1 (2026) for Verification Zone 3

- 1.4.1.36. The summary results in Table 31 show a negligible predicted deterioration in the maximum concentration at receptors within Verification Zone 3 for NO₂ of 0.4 μ g/m³ in the DS1 scenario. The maximum DS1 concentration of 32.7 μ g/m³ is under the objective. Figure 23.7 Sheet 3 should be compared with Figure 23.6 Sheet 3 for a comparison of the DM against the DS1 scenario. There is a negligible increase in the highest predicted concentrations for PM₁₀ and no change in the highest predicted concentration of PM_{2.5}.
- 1.4.1.37. The highest predicted concentration of 32.7 μg/m³ for NO₂ under the DS1 scenario occurs at residential receptors on Northern Parade at its nearest point to the A3 London Road.
- 1.4.1.38. The highest predicted deterioration of 0.5 μg/m³ in concentrations of NO₂ occurs at commercial receptors on Dundas Lane, and includes the Admiral Lord Nelson School, where the DM concentration is 18.6 μg/m³.

- 1.4.1.39. The highest predicted improvement of 0.7 μg/m³ in concentrations of NO₂ occurs at residential and commercial receptors at the junction of Burrfields Road and Eastern Road.
- 1.4.1.40. For NO₂, PM₁₀ and PM_{2.5}, concentrations are not predicted to change at the majority of the receptors assessed for the DS1 scenario. For all modelled pollutants a greater number of receptors are predicted to experience a deterioration in concentrations compared to those that are predicted to experience an improvement.
- 1.4.1.41. A summary of the results for diversions and road closures for the DS2 scenario are shown in Table 32.

Table 32 – Non-construction Related Traffic Assessment Results for the Do-Something Scenario 2 (2026) for Verification Zone 3

		Construction Scenario DS2 202			
Pollutant		NO ₂	PM 10	PM _{2.5}	
Annual Mean Li	mit Value (µg/m³)	40	40	25	
DM (2026) Maximum Modelled Concentration		32.3	22.1	12.8	
Summary Results	DS2 (2026) Maximum Modelled Concentration	32.6	22.1	12.8	
	Removed Exceedances	0	0	0	
	New Exceedances	0	0	0	
	Improvement in Concentration	111	49	50	
Total Number of Properties	No Change in Concentration	1,806	2,629	2,949	
orropenies	Deterioration in Concentration	1,366	605	284	
Do Something-	Maximum Improvement	0.5	0.2	0.1	
Do Minimum Annual Mean Change (µg/m³)	Maximum Deterioration	0.6	0.2	0.1	

- 1.4.1.42. The summary results in Table 32 show a negligible predicted deterioration in the maximum concentration at receptors within Verification Zone 3 for NO₂ of 0.3 μg/m³ in the DS1 scenario. The maximum DS2 concentration of 32.6 μg/m³ is under the objective. Figure 23.8 Sheet 3 should be compared with Figure 23.6 Sheet 3 for a comparison of the DM against the DS2 scenario. There is a negligible increase in the highest predicted concentrations for PM₁₀ and no change in the highest predicted concentration of PM_{2.5}.
- 1.4.1.43. The highest predicted concentration of 32.6 μg/m³ for NO₂ under the DS2 scenario occurs at 59 high density residential receptors and four commercial receptors at the junction of Military Road with the A3 London Road.
- 1.4.1.44. The highest predicted deterioration of 0.6 μg/m³ in concentrations of NO₂ occurs at commercial receptors on Dundas Lane, and includes the Admiral Lord Nelson School, where the DM concentration is 18.6 μg/m³.
- 1.4.1.45. The highest predicted improvement of 0.5 μg/m³ in concentrations of NO₂ occurs at commercial receptors on Bilton Way.
- 1.4.1.46. For all modelled pollutants, concentrations are predicted to be unchanged at the majority of receptors assessed for the DS2 scenario. A larger number of receptors are predicted to experience aa deterioration in ambient concentrations of all modelled pollutants compared to those predicted to experience an improvement.
- 1.4.1.47. NO₂ concentrations at a selection of representative receptors are shown in Table 33, consisting of high sensitivity receptors highlighted in Table 33, Figure 23.7 Sheet 3 and Figure 23.8 Sheet 3, and within 50 m of the road centreline, and those receptors predicted to experience the highest concentrations or largest changes (> ±0.2 µg/m³).

Table 33 - Verification Zone 3 Representative Receptor Selection

Receptor		NO ₂ Concentration (µg/m ³)						In
		DS1	DS1 Change	IAQM	DS2	DS2 Change	IAQM	In AQMA
Admiral Lord Nelson School, Dundas Lane, Portsmouth	18.7	19.2	0.5	Negligible Adverse	19.3	0.6	Negligible Adverse	No
Dundas Lane, Portsmouth	18.6	19.1	0.5	Negligible Adverse	19.1	0.5	Negligible Adverse	No
Eastern Road Car Sales, Eastern Road, Portsmouth	20.2	19.5	-0.7	Negligible Beneficial	19.9	-0.3	Negligible Beneficial	No
Texaco Ltd, Texaco, Eastern Road Service Station, Eastern Road, Portsmouth	20.2	19.5	-0.7	Negligible Beneficial	19.9	-0.3	Negligible Beneficial	No
Bilton Way, Portsmouth	20.7	20.2	-0.5	Negligible Beneficial	20.2	-0.5	Negligible Beneficial	No

Verification Zone 4

Verification Zone 4 Receptors

1.4.1.48. Within Verification Zone 4, the number of impacted receptors is shown in Table 34.

Table 34 - Impacted Receptors in Verification Zone 4

Туре	Receptor Count
Residential	4,890
Commercial	363
Community	49
Military	0
Total Number of Receptors	5,302

1.4.1.49.

Within the numbers of receptors shown in Table 34, there are receptors with particular sensitivity, as shown in Table 35.

Table 35 - Particularly Sensitive Receptors in Verification Zone 4

Sensitive Receptor	Receptor Count
Schools	11
Medical	24
Hospice	0
Sheltered Accommodation	0
Care Home	11

Verification Zone 4 Results

1.4.1.50. During the construction stage a summary of the results for road closure and diversion traffic for the DS1 scenario are shown in Table 36.

0.2

1.0

		Construction Scenario DS1 2			
Pollutant		NO ₂	PM ₁₀	PM _{2.5}	
Annual Mean Li	mit Value (µg/m³)	40	40	25	
Summary Results	DM (2026) Maximum Modelled Concentration	41.7 22.7		13.5	
	DS1 (2026) Maximum Modelled Concentration	41.7	22.7	13.5	
	Removed Exceedances	0	0	0	
	New Exceedances	0	0	0	
	Improvement in Concentration	490	403	152	
Total Number of Properties	No Change in Concentration	2,824	4,173	4,891	
	Deterioration in Concentration	1,988	726	259	
Do Something-	Maximum Improvement	0.9	0.3	0.1	
Do Minimum Annual Mean					

Table 36 – Non-construction Related Traffic Assessment Results for the Do-

1.4.1.51. The modelling results indicate that there is no change in the highest predicted concentration at receptors within Verification Zone 4 for NO₂ in the DS1 scenario. The maximum DS1 concentration of 41.7 µg/m³ shown in Table 36 is 104% of the objective, which is unchanged from the Do-Minimum scenario. Figure 23.7 Sheet 4 should be compared with Figure 23.6 Sheet 4 for a comparison of the DM against the DS1 scenario. There is no change in the highest predicted concentrations for PM₁₀ and PM_{2.5}.

Maximum Deterioration

Change

 $(\mu g/m^3)$

- 1.4.1.52. The highest predicted concentration of 41.7 µg/m³ for NO₂ under the DS1 scenario occurs at 16 residential receptors on either side of the junction of The Old Road, with Highbury Grove.
- 1.4.1.53. The highest predicted deterioration of 1.0 µg/m³ in concentrations of NO₂ occurs at the Inland Revenue offices located north of Portsbridge Roundabout adjacent to the A397 Northern Road where the DM concentration is 30.8 µg/m³.

0.1

- 1.4.1.54. The highest predicted improvement of 0.9 μg/m³ in concentrations of NO₂ occurs at 16 residential receptors at the junction of the A2030 Havant Road with Eastern Road.
- 1.4.1.55. For all modelled pollutants, concentrations are not predicted to change at the majority of the receptors assessed for the DS1 scenario. For all modelled pollutants, more receptors are predicted to experience a deterioration than an improvement. Overall, the level of maximum deterioration is greater than the maximum improvement, except for PM_{2.5} where they are equal.
- 1.4.1.56. A summary of the results for diversions and road closures for the DS2 scenario are shown in Table 37.

Table 37 – Non-construction Related Traffic Assessment Results for the Do-Something Scenario 2 (2026) for Verification Zone 4

		Construction Scenario DS2 2026					
Pollutant		NO ₂	PM ₁₀	PM _{2.5}			
Annual Mean Li	mit Value (µg/m³)	40	40	25			
	DM (2026) Maximum Modelled Concentration	41.7	22.7	13.5			
Summary Results	DS2 (2026) Maximum Modelled Concentration	41.7	22.7	13.5			
	Removed Exceedances	0	0	0			
	New Exceedances	0	0	0			
	Improvement in Concentration	482	376	147			
Total Number of Properties	No Change in Concentration	2,834	4,200	4,896			
orroportioo	Deterioration in Concentration	1,986	726	259			
Do Something-	Maximum Improvement	0.9	0.3	0.1			
Do Minimum Annual Mean Change (µg/m³)	Maximum Deterioration	0.5	0.2	0.1			

- 1.4.1.57. The summary results in Table 37.
- 1.4.1.58. Table 37 show that there is no change in the maximum predicted concentration of NO₂. The highest predicted concentration of NO₂ is 41.7 μg/m³, which is 104% of the objective and is unchanged from the Do-Minimum scenario. The maximum predicted concentrations of PM₁₀ and PM_{2.5} are unchanged. Figure 23.8 Sheet 4 should be compared with Figure 23.6 Sheet 4 for a comparison of the DM against the DS2 scenario.
- 1.4.1.59. The highest predicted concentration of 41.7 μg/m³ for NO₂ under the DS2 scenario occurs at 16 residential receptors on either side of the junction of The Old Road, with Highbury Grove.
- 1.4.1.60. The highest predicted deterioration of 0.5 μg/m³ in concentrations of NO₂ occurs at the Inland Revenue offices located north of Portsbridge Roundabout adjacent to the A397 Northern Road where the DM concentration is 30.8 μg/m³.
- 1.4.1.61. The highest predicted improvement of 0.9 μg/m³ in concentrations of NO₂ occurs at residential receptors at the junction of the A2030 Havant Road with Eastern Road.
- 1.4.1.62. For all modelled pollutants, concentrations are not predicted to change at the majority of receptors assessed for the DS2 scenario. Whilst a larger number of receptors are predicted to experience a deterioration in concentrations for all modelled pollutants, the maximum improvement in concentrations is predicted to be larger than the maximum deterioration, except for PM_{2.5} where they are of equal magnitude.
- 1.4.1.63. NO₂ concentrations at a selection of representative receptors is shown in Table 38 consisting of high sensitivity receptors highlighted in Table 38, Figure 23.7 Sheet 4 and Figure 23.8 Sheet 4, and within 50 m of the road centreline, and those receptors predicted to experience the highest concentrations or largest changes (> ±0.2 µg/m³).

Table 38 - Verification Zone 4 Representative Receptor Selection

		NO ₂ Concentration (µg/m ³)								
Receptor	DM	DS1	DS1 Change	IAQM	DS2	DS2 Change	IAQM	In AQMA		
Solent Infant School, Evelegh Road, Portsmouth	16.8	17	0.2	Negligible Adverse	17	0.2	Negligible Adverse	No		
65 Evelegh Road, Portsmouth	16.8	17	0.2	Negligible Adverse	17	0.2	Negligible Adverse	No		
A N A Treatment Centres Ltd, Fleming House, Waterworks Road, Portsmouth	17.9	17.4	-0.5	Negligible Beneficial	17.4	-0.5	Negligible Beneficial	No		
331 Havant Road, Portsmouth	17.2	17.5	0.3	Negligible Adverse	17.5	0.3	Negligible Adverse	No		
3 Highbury Grove, Portsmouth	41.7	41.7	0	Moderate	41.7	0	Moderate	No		
6 Highbury Grove, Portsmouth	41.7	41.7	0	Moderate	41.7	0	Moderate	No		
11 Highbury Grove, Portsmouth	41.7	41.7	0	Moderate	41.7	0	Moderate	No		
77 Lealand Road, Portsmouth	18.1	17.5	-0.6	Negligible Beneficial	17.5	-0.6	Negligible Beneficial	No		
4 Copsey Close, Portsmouth	19.3	18.4	-0.9	Negligible Beneficial	18.4	-0.9	Negligible Beneficial	No		

Verification Zone 5

Verification Zone 5 Receptors

1.4.1.64. Within Verification Zone 5, the number of impacted receptors is shown in Table 39.

Table 39 - Impacted Receptors in Verification Zone 5

Туре	Receptor Count
Residential	7,324
Commercial	255
Community	37
Military	1
Total Number of Receptors	7,617

1.4.1.65.

Within the numbers of receptors shown in Table 39, there are receptors with particular sensitivity, as shown in Table 40.

Table 40 - Particularly Sensitive Receptors in Verification Zone 5

Sensitive Receptor	Receptor Count
Schools	11
Medical	7
Hospice	0
Sheltered Accommodation	0
Care Home	18

Verification Zone 5 Results

1.4.1.66. During the construction stage a summary of the results for road closure and diversion traffic for the DS1 scenario are shown in Table 41.

		Construction Scenario DS1 2026					
Pollutant		NO ₂	PM ₁₀	PM _{2.5}			
Annual Mean Limit Value (µg/m³)		40	40	25			
	DM (2026) Maximum Modelled Concentration	38.8	25.7	13.9			
Summary Results	DS1 (2026) Maximum Modelled Concentration	39.5	26.0	14.0			
	Removed Exceedances	0	0	0			
	New Exceedances	0	0	0			
	Improvement in Concentration	1,061	955	773			
Total Number of Properties	No Change in Concentration	762	2,177	4,769			
orriopenties	Deterioration in Concentration	5,794	4,485	2,075			
Do Something-	Maximum Improvement	2.5	1.0	0.3			
Do Minimum Annual Mean	Maximum Deterioration	2.5	1.1	0.3			

Table 41 – Non-construction Related Traffic Assessment Results for the Do Something Scenario 1 (2026) for Verification Zone 5

1.4.1.67. The summary results in Table 41 show that there is a predicted deterioration in the highest concentration for all modelled pollutants at receptors within Verification Zone 5 under the DS1 scenario. Figure 23.7 Sheet 5 should be compared with Figure 23.6 Sheet 5 for a comparison of the DM against the DS1 scenario. The maximum predicted NO₂ concentration of 39.5 µg/m³ is just under the objective. The potential to exceed the objective under both the Do-Minimum and DS1 scenarios is within the error in the model.

Change (µg/m³)

- 1.4.1.68. The highest predicted concentration of 39.5 μg/m³ for NO₂ under the DS1 scenario occurs at residential receptors north of the junction of London Road with the B2177 Portsdown Hill Road.
- 1.4.1.69. The highest predicted deterioration of 2.5 μ g/m³ in concentrations of NO₂ occurs at residential receptors on Maralyn Road, up to 200m from Stakes Hill Road where the DM concentration is 20.7 μ g/m³.

- 1.4.1.70. The highest predicted improvement of 2.5 μg/m³ in concentrations of NO₂ occurs at residential receptors north of the junction of London Road with the B2177 Portsdown Hill Road.
- 1.4.1.71. For NO₂ and PM₁₀ the majority of receptors in Verification Zone 5 are predicted to experience a deterioration in concentrations, whilst for PM_{2.5} the majority are predicted to experience no change. Overall, the predicted magnitude of maximum improvement is equal to the maximum deterioration, except for PM₁₀ where the predicted magnitude of maximum deterioration is greater.
- 1.4.1.72. The following receptors are presented in Table 43 in response to a request from the EHO for Havant:
 - Nº 2 Bedhampton Hill, Havant, representative of concentrations in the Portsdown Hill area of Havant;
 - Nº 262 Stakes Hill Road, Havant, representative of the Stakes Hill area;
 - Nº 32 Hurstville Drive, Havant, representative of the Hurstville area; and
 - Nº 54. Westbrook Grove, Havant, representative of the Aldermoor area.
- 1.4.1.73. A summary of the results for diversions and road closures for the DS2 scenario are shown in Table 42.

		Constructio	on Scenario	DS2 2026
Pollutant		NO ₂	PM ₁₀	PM _{2.5}
Annual Mean Li	mit Value (µg/m³)	40	40	25
	DM (2026) Maximum Modelled Concentration	38.8	25.7	13.9
Summary Results	DS2 (2026) Maximum Modelled Concentration	39.2	25.9	14
	Removed Exceedances	0	0	0
	New Exceedances	0	0	0
	Improvement in Concentration	1,061	955	773
Total Number of Properties	No Change in Concentration	763	2,143	4,768
orriopenies	Deterioration in Concentration	5,793	4,519	2,076
Do Something-	Maximum Improvement	2.5	1	0.3
Do Minimum Annual Mean Change (µg/m ³)	Maximum Deterioration	2.6	1.1	0.3

Table 42 – Non-construction Related Traffic Assessment Results for the Do-Something Scenario 2 (2026) for Verification Zone 5

- 1.4.1.74. The summary results in Table 42 show that there is a predicted deterioration in the highest concentration for all modelled pollutants at receptors within Verification Zone 5 under the DS2 scenario. The maximum predicted NO₂ concentration of 39.2 μg/m³ is just under the objective. The potential to exceed the objective under both the Do-Minimum and DS1 scenarios is within the error in the model.
- 1.4.1.75. Figure 23.8 Sheet 5 should be compared with Figure 23.6 Sheet 5 for a comparison of the DM against the DS2 scenario.
- 1.4.1.76. The highest predicted concentration of 39.2 μg/m³ for NO₂ under the DS2 scenario occurs at 6 residential receptors north of the junction of London Road with the B2177 Portsdown Hill Road.
- 1.4.1.77. The highest predicted deterioration of 2.6 μ g/m³ in concentrations of NO₂ occurs at 17 residential receptors on Maralyn Road, up to 200m from Stakes Hill Road where the DM concentration is 20.7 μ g/m³.

- 1.4.1.78. The highest predicted improvement of 2.5 μg/m³ in concentrations of NO₂ occurs at
 4 residential receptors north of the junction of London Road with the B2177
 Portsdown Hill Road.
- 1.4.1.79. For NO₂ and PM₁₀ a larger number of receptors are predicted to experience a deterioration in concentrations compared to those experiencing no change or an improvement, whereas for PM_{2.5} are larger number of receptors are predicted to experience no change. For NO₂ and PM₁₀ the maximum predicted improvements in concentrations are greater than the maximum predicted deterioration, and for PM_{2.5} the predicted deterioration is of a greater magnitude than the predicted improvement.
- 1.4.1.80. The following receptor results are presented in Table 43 in response to a request from the EHO for Havant:
 - At No. 2 Bedhampton Hill, Havant, representative of concentrations in the Portsdown Hill area of Havan;
 - At No. 262 Stakes Hill Road, Havant, representative of the Stakes Hill area;
 - At No. 32 Hurstville Drive, Havant, representative of the Hurstville area; and
 - At No. 54. Westbrook Grove, Havant, representative of the Aldermoor area.
- 1.4.1.81. NO₂ concentrations at a selection of representative receptors is shown in Table 43 consisting of high sensitivity receptors highlighted in Table 43, Figure 23.7 Sheet 5 and Figure 23.8 Sheet 5, and within 50 m of the road centreline, and within 50 m of the road centreline, and those receptors predicted to experience the highest concentrations or largest changes (> $\pm 0.2 \mu g/m^3$).

Table 43 - Verification Zone 5 Representative Receptor Selection

	NO ₂ Concentration (µg/m ³)								
Receptor	DM	DS1	DS1 Change	IAQM	DS2	DS2 Change	IAQM	In AQMA	
K B Griffin Builders, Towers Farm, 16 Portsdown Hill Road, Havant	31.1	31.7	0.6	Slight Adverse	31.7	0.6	Slight Adverse	No	
36 Hurstville Drive, Waterlooville	17.3	19.5	2.2	Slight Adverse	19.5	2.2	Slight Adverse	No	
Edenvale Nursing Home, 63-65, 63 Silvester Road, Waterlooville	15.5	16.5	1.0	Negligible Adverse	16.5	1.0	Negligible Adverse	No	
2 Padnell Road, Waterlooville	18.1	17.9	-0.2	Negligible Beneficial	17.9	-0.2	Negligible Beneficial	No	
Queenswood Surgery, 223 London Road, Waterlooville	18	18.4	0.4	Negligible Adverse	18.4	0.4	Negligible Adverse	No	
197 London Road, Waterlooville	18	18.4	0.4	Negligible Adverse	18.4	0.4	Negligible Adverse	No	
Trimak Ltd, Cowpalin Family Practice, 26-30, 26 London Road, Waterlooville	18.1	17.9	-0.2	Negligible Beneficial	17.9	-0.2	Negligible Beneficial	No	
Purbrook Junior & Infant School, Aldermoor Road East, Waterlooville	15.1	16.2	1.1	Negligible Adverse	16.1	1.0	Negligible Adverse	No	

		NO ₂ Concentration (µg/m ³)								
Receptor	DM	DS1	DS1 Change	IAQM	DS2	DS2 Change	IAQM	In AQMA		
Oaklands Care Home, 216 Stakes Hill Road, Waterlooville	19.2	20.4	1.2	Negligible Adverse	20.4	1.2	Negligible Adverse	No		
Latham Lodge Rest Home, 137-139, 137 Stakes Road, Waterlooville	19	19.4	0.4	Negligible Adverse	19.5	0.5	Negligible Adverse	No		
Belmont Castle Rest Home, 18-20, 18 Portsdown Hill Road, Havant	31.1	31.7	0.6	Slight Adverse	31.7	0.6	Slight Adverse	No		
79 Silvester Road, Waterlooville	15.5	16.5	1.0	Negligible Adverse	16.5	1.0	Negligible Adverse	No		
31 Trefoil Close, Waterlooville	23.6	25.9	2.3	Slight Adverse	25.9	2.3	Slight Adverse	No		
2 Lower Bere Wood, Waterlooville	17.3	19.5	2.2	Slight Adverse	19.5	2.2	Slight Adverse	No		
9 Trefoil Close, Waterlooville	24.5	26	1.5	Negligible Adverse	26	1.5	Negligible Adverse	No		
28 Hurstville Drive, Waterlooville	17.4	18.8	1.4	Negligible Adverse	18.8	1.4	Negligible Adverse	No		

	NO ₂ Concentration (µg/m ³)									
Receptor	DM	DS1	DS1 Change	IAQM	DS2	DS2 Change	IAQM	In AQMA		
1 Dogwood Dell, Waterlooville	17.9	19.2	1.3	Negligible Adverse	19.2	1.3	Negligible Adverse	No		
3 Lily Avenue, Waterlooville	18	17.7	-0.3	Negligible Beneficial	17.7	-0.3	Negligible Beneficial	No		
45 Hurstville Drive, Waterlooville	20	19.7	-0.3	Negligible Beneficial	19.7	-0.3	Negligible Beneficial	No		
14 Siskin Grove, Waterlooville	34.4	33.9	-0.5	Slight Beneficial	33.9	-0.5	Slight Beneficial	No		
Broadways Coffee Shop, 14 London Road, Waterlooville	15	14.3	-0.7	Negligible Beneficial	14.3	-0.7	Negligible Beneficial	No		
33c, 33 London Road, Waterlooville	24.5	23.7	-0.8	Negligible Beneficial	23.7	-0.8	Negligible Beneficial	No		
15 London Road, Waterlooville	24.7	23.7	-1.0	Negligible Beneficial	23.7	-1.0	Negligible Beneficial	No		
44 Stakes Road, Waterlooville	18.9	17.9	-1.0	Negligible Beneficial	17.9	-1.0	Negligible Beneficial	No		

	NO ₂ Concentration (µg/m ³)								
Receptor	DM	DS1	DS1 Change	IAQM	DS2	DS2 Change	IAQM	In AQMA	
9 Debney Lodge, Mey Close, Waterlooville	29.3	27.1	-2.2	Slight Beneficial	27.1	-2.2	Slight Beneficial	No	
179 Park Avenue, Waterlooville	17.9	15.5	-2.4	Slight Beneficial	15.6	-2.3	Slight Beneficial	No	
2 Boundary Way, Portsmouth	35.1	32.7	-2.4	Moderate Beneficial	32.6	-2.5	Moderate Beneficial	No	
2 Bedhampton Hill, Denmead	31.1	31.7	0.6	Slight Adverse	31.7	0.6	Slight Adverse	No	
262 Stakes Hill Road, Waterlooville	20.4	21.6	1.2	Negligible Adverse	21.7	1.3	Negligible Adverse	No	
32 Hurstville Drive, Waterlooville	17.3	19.5	2.2	Slight Adverse	19.5	2.2	Slight Adverse	No	
54 Westbrook Grove, Waterlooville	15.1	16.2	1.1	Negligible Adverse	16.2	1.1	Negligible Adverse	No	
Wansbeck, 8 Boundary Way	38.8	39.5	0.7	Moderate Adverse	39.2	0.4	Moderate Adverse	No	

Verification Zone 6

Verification Zone 6 Receptors

1.4.1.82. Within Verification Zone 6, the number of impacted receptors is shown in Table 44.

Table 44 - Impacted Receptors in Verification Zone 6

Туре	Receptor Count
Residential	4,004
Commercial	445
Community	22
Military	2
Total Number of Receptors	4,473

1.4.1.83.

Within the numbers of receptors shown in Table 44, there are receptors with particular sensitivity, as shown in Table 45.

Table 45 - Particularly Sensitive Receptors in Verification Zone 6

Sensitive Receptor	Receptor Count
Schools	9
Medical	1
Hospice	0
Sheltered Accommodation	0
Care Home	6

Verification Zone 6 Results

1.4.1.84. During the construction stage a summary of the results for road closure and diversion traffic for the DS1 scenario are shown in Table 46.

Table 46 – Non-construction Related Traffic Assessment Results for the Do Something Scenario 1 (2026) for Verification Zone 6

		Construction Scenario DS1 202		
Pollutant		NO ₂	PM ₁₀	PM _{2.5}
Annual Mean Li	Annual Mean Limit Value (µg/m³)			25
Summary ResultsDM (2026) Maximum Modelled Concentration		53.6	31.6	16.3

			on Scenario	DS1 2026
Pollutant		NO ₂	PM ₁₀	PM _{2.5}
Annual Mean Li	mit Value (µg/m³)	40	40	25
	DS1 (2026) Maximum Modelled Concentration	53.6	31.7	16.3
	Removed Exceedances	0	0	0
	New Exceedances	0	0	0
	Improvement in Concentration	228	8	7
Total Number of Properties	No Change in Concentration	3,757	4,251	4,446
orropenies	Deterioration in Concentration	488	214	20
Do Something-	Maximum Improvement	0.6	0.2	0.1
Do Minimum Annual Mean Change (µg/m ³)	Maximum Deterioration	0.3	0.1	0.1

1.4.1.85. The summary results in Table 46 show an exceedance under the Do-Minimum scenario for NO₂ which is unchanged under the DS1 scenario. This result should be interpreted in conjunction with the information on verification and model error in Appendix 23.3 (Air Quality Traffic Modelling) of the ES Volume 3 (document reference 6.3.23.3) taking into account that it was decided not to use the model correction factors in this zone due to a large increase in the model error. Figure 23.7 Sheet 6 should be compared with Figure 23.6 Sheet 6 for a comparison of the DM against the DS1 scenario. There is negligible improvement in the highest predicted concentrations for PM₁₀ and no change for PM_{2.5}.

- 1.4.1.86. The highest predicted concentration of 53.6 µg/m³ for NO₂ under the DS1 scenario occurs at residential and commercial receptors adjacent to the westbound carriageway of the M27 in the Portsdown Hill and Paulsgrove areas.
- 1.4.1.87. The highest predicted deterioration of 0.3 μ g/m³ in concentrations of NO₂ occurs at locations close to the M275 in the Tipner Lane area of Portsmouth where the DM concentration is 47.6 μ g/m³, at residential receptors on Glebe Park Avenue where the DM concentration is 33.7 μ g/m³, and on Holly Drive and Badger Brow where the DM concentration is 32.8 μ g/m³.

- 1.4.1.88. For NO₂, PM₁₀ and PM_{2.5}, concentrations are not predicted to change at the majority of the receptors assessed for the DS1 scenario. For NO₂ a greater number of receptors are predicted to experience an improvement compared to those predicted to experience a deterioration, whilst for PM₁₀ and PM_{2.5} a greater number are predicted to experience a deterioration.
- 1.4.1.89. A summary of the results for diversions and road closures for the DS2 scenario are shown in Table 47.

Something Scena	ario 2 (2026) for Verification Zone			
		Construction Scenario DS2 2		
Pollutant		NO ₂	PM ₁₀	PM _{2.5}
Annual Mean Li	mit Value (µg/m³)	40	40	25
	DM (2026) Maximum Modelled Concentration	53.6	31.6	16.3
Summary Results	DS2 (2026) Maximum Modelled Concentration	53.6	31.6	16.3
	Removed Exceedances	0	0	0
	New Exceedances	0	0	0
	Improvement in Concentration	128	74	73
Total Number of Properties	No Change in Concentration	3,952	4,227	4,382
orropenies	Deterioration in Concentration	393	172	18
Do Something-	Maximum Improvement	0.4	0.2	0.1
Do Minimum Annual Mean Change (µg/m ³)	Maximum Deterioration	0.3	0.1	0.1

Table 47 – Non-construction Related Traffic Assessment Results for the Do-Something Scenario 2 (2026) for Verification Zone 6

- 1.4.1.90. The summary results in Table 47 show an exceedance under the Do-Minimum scenario for NO₂. This is predicted to be unchanged under the DS2 scenario. This result should be interpreted in conjunction with the information on verification and model error in Appendix 23.3 (Air Quality Traffic Modelling) of the ES Volume 3 (document reference 6.3.23.3) taking into account that it was decided not to use the model correction factors in this zone due to a large increase in the model error. Figure 23.8 Sheet 6 should be compared with Figure 23.6 Sheet 6 for a comparison of the DM against the DS2 scenario. There is also no change in the highest predicted concentrations for PM₁₀ and PM_{2.5}.
- 1.4.1.91. The highest predicted concentration of 53.6 μg/m³ for NO₂ under the DS2 scenario occurs at receptors adjacent to the westbound carriageway of the M27 in the Portsdown area.

- 1.4.1.92. The highest predicted deterioration of 0.3 μg/m³ in concentrations of NO₂ occurs at residential receptors on Glebe Park Avenue where the DM concentration is 33.7 μg/m³, and on Holly Drive and Badger Brow where the DM concentration is 32.8 μg/m³.
- 1.4.1.93. For NO₂, PM₁₀ and PM_{2.5}, concentrations are not predicted to change at the majority of the receptors assessed for the DS1 scenario. For NO₂ and PM₁₀ a greater number of receptors are predicted to experience a deterioration compared to those predicted to experience a improvement, whilst for PM_{2.5} a greater number are predicted to experience a deterioration.
- 1.4.1.94. NO₂ concentrations at a selection of representative receptors is shown in Table 48, consisting of high sensitivity receptors highlighted in Table 48, Figure 23.7 Sheet 6 and Figure 23.8 Sheet 6, and within 50 m of the road centreline, and those receptors predicted to experience the highest concentrations or largest changes (> ±0.2 µg/m³).

Table 48 - Verification Zone 6 Representative Receptor Selection

	NO ₂ Concentration (µg/m³)							In
Receptor	DM	DS1	DS1 Change	IAQM	DS2	DS2 Change	IAQM	In AQMA
109 Browning Avenue, Portsmouth	53.6	53.6	0	Moderate	53.6	0.0	Moderate	No
Highbury College, Tudor Crescent, Portsmouth	49.1	49	-0.1	Moderate Beneficial	49.2	0.1	Moderate Beneficial	No
Flat 33, Graduate Court, Tudor Crescent, Portsmouth	47.7	47.8	0.1	Moderate Adverse	47.7	0.0	Moderate Adverse	No
37 Portsdown View, Havant	40.3	40.5	0.2	Slight Adverse	40.4	0.1	Slight Adverse	No
43 Coleridge Road, Portsmouth	53.6	53.6	0	Moderate	53.6	0.0	Moderate	No
39 Falmouth Road, Portsmouth	53.6	53.6	0	Moderate	53.6	0.0	Moderate	No
1 Falmouth Road, Portsmouth	52.6	52.6	0	Moderate	52.6	0.0	Moderate	No
41 Tudor Crescent, Portsmouth	49	49.1	0.1	Moderate Adverse	49	0.0	Moderate Adverse	No
97 Hillsley Road, Portsmouth	52.8	52.8	0	Moderate	52.8	0.0	Moderate	No
19 Hillsley Road, Portsmouth	52.8	52.8	0	Moderate	52.8	0.0	Moderate	No

Receptor		NO ₂ Concentration (µg/m ³)						
		DS1	DS1 Change	IAQM	DS2	DS2 Change	IAQM	In AQMA
Flat 10, Oyster Quay, Port Way, Portsmouth	45.6	45.5	-0.1	Moderate Beneficial	45.6	0.0	Moderate Beneficial	No
Flat 2, Oyster Quay, Port Way, Portsmouth	45.6	45.5	-0.1	Moderate Beneficial	45.6	0.0	Moderate Beneficial	No
Flat 39, Oyster Quay, Port Way, Portsmouth	45.6	45.5	-0.1	Moderate Beneficial	45.6	0.0	Moderate Beneficial	No

Air Quality Management Areas

AQMA Receptors

1.4.1.95. Within the City of Portsmouth, the combined number of impacted receptors affected by roads intersecting the city's AQMAs are shown in Table 49.

Table 49 - Impacted Receptors affected by AQMAs

Туре	Receptor Count
Residential	14,515
Commercial	1,150
Community	89
Military	1
Total Number of Receptors	15,755

1.4.1.96. Within the numbers of receptors shown in Table 49, there are receptors with particular sensitivity, as shown in Table 50.

Table 50 - Particularly Sensitive Receptors affected by AQMAs

Sensitive Receptor	Receptor Count
Schools	37
Medical	17
Hospice	0
Sheltered Accommodation	1
Care Home	42

AQMA Results

1.4.1.97. During the construction stage a summary of the results for road closure and diversion traffic for the DS1 scenario are shown in Table 51.

		Construct	ion Scenario	DS1 2026
Pollutant		NO ₂	PM ₁₀	PM _{2.5}
Annual Mean Li	mit Value (µg/m³)	40	40	25
	DM (2026) Maximum Modelled Concentration	48.2	23.6	14.6
Summary Results	DS1 (2026) Maximum Modelled Concentration	48.3	23.6	14.6
	Removed Exceedances	0	0	0
	New Exceedances	0	0	0
	Improvement in Concentration	2,403	1,633	695
Total Number of Properties	No Change in Concentration	5,261	12,066	14,637
orropentes	Deterioration in Concentration	8,091	2,056	423
Do Something-	Maximum Improvement	1.2	0.3	0.1
Do Minimum Annual Mean Change (µg/m ³)	Maximum Deterioration	0.4	0.2	0.1

Table 51 – Non-construction Related Traffic Assessment Results for the Do Something Scenario 1 (2026) for AQMAs

- 1.4.1.98. The summary results in Table 51 show that there is a deterioration of 0.5 μ g/m³ in the highest predicted concentration at receptors within the Portsmouth AQMAs for NO₂ in the DS1 scenario. The maximum DS1 concentration of 48.3 μ g/m³ is 121% the objective. Figure 23.10 should be compared to Figure 23.9 for a comparison of the DM against the DS1 scenario. There is no change in the highest predicted concentrations for PM₁₀ or PM_{2.5}.
- 1.4.1.99. The highest predicted concentration of 48.3 μg/m³ for NO₂ under the DS1 scenario occurs at high occupancy residential receptors on Old Commercial Street and Grafton Street, closest to the M275.
- 1.4.1.100. The highest predicted deterioration of 0.4 μg/m³ in concentrations of NO₂ occurs at receptors on Whale Island Way, close to the M275, where the DM concentration is 43.6 μg/m³.

- 1.4.1.101. The highest predicted improvement of 1.2 μg/m³ in concentrations of NO₂ occurs at high density residential receptors and one commercial receptor located north of the junction of Hayling Avenue and Eastern Road.
- 1.4.1.102. For PM₁₀ and PM_{2.5}, concentrations are not predicted to change at the majority of the receptors assessed for the DS1 scenario. For NO₂ a majority of receptors are predicted to experience a deterioration in ambient concentrations. For all modelled pollutants, more receptors are predicted to experience a deterioration than an improvement in pollutant concentrations. Overall, the level of maximum improvement is greater than the maximum deterioration, except for PM_{2.5} where they are equal.
- 1.4.1.103. A summary of the results for diversions and road closures for the DS2 scenario are shown in Table 52.

Table 52 – Non-construction Related Traffic Assessment Results for the Do Something Scenario 2 (2026) for AQMAs

			ion Scenario	DS2 2026
Pollutant		NO ₂	PM ₁₀	PM _{2.5}
Annual Mean Li	mit Value (µg/m³)	40	40	25
	DM (2026) Maximum Modelled Concentration	48.2	23.6	14.6
Summary Results	DS2 (2026) Maximum Modelled Concentration	48.4	23.6	14.6
	Removed Exceedances	0	0	0
	New Exceedances	0	0	0
	Improvement in Concentration	1005	673	0
Total Number of Properties	No Change in Concentration	11,857	13,848	15,472
	Deterioration in Concentration	2,893	1,234	283
Do Something-	Maximum Improvement	0.2	0.1	0
Do Minimum Annual Mean Change (µg/m³)	Maximum Deterioration	0.2	0.1	0.1

- 1.4.1.104. The summary results in Table 52 show that there is a deterioration of 0.2 μg/m³ in the highest predicted concentration at receptors within the Portsmouth AQMAs for NO₂ in the DS2 scenario. The maximum DS2 concentration of 48.4 μg/m³ is 121% of objective. Figure 23.11 should be compared to Figure 23.9. There is no change in the highest predicted concentrations for PM₁₀ or PM_{2.5}.
- 1.4.1.105. The highest predicted concentration of 48.4 μg/m³ for NO₂ under the DS2 scenario occurs at high occupancy residential receptors on Old Commercial Street and Grafton Street, closest to the M275.
- 1.4.1.106. The highest predicted deterioration of 0.2 μg/m³ in concentrations of NO₂ occurs at receptors on Grafton Street and Old Commercial Street where the DM concentration is 48.2 μg/m³, at high density residential receptors on Simpson Road near the M275 where the DM concentration is 44.2 μg/m³, at receptors on Whale Island Way where the DM concentration is 43.6 μg/m³, and on Simpson road nearer to Twyford Avenue where the DM concentration is 29.3 μg/m³.
- 1.4.1.107. The highest predicted improvement of 0.2 µg/m³ in concentrations of NO₂ occurs high occupancy residential receptors at the junction of Eastern Road with Hayling Avenue.
- 1.4.1.108. For all modelled pollutants, concentrations are not predicted to change at the vast majority of receptors assessed for the DS2 scenario. The maximum predicted improvement in concentrations of NO₂ and PM₁₀ is equal to the maximum predicted deterioration, however for PM_{2.5} the maximum predicted deterioration and maximum predicted improvement are equal.

1.4.2. CONSTRUCTION TRAFFIC

Construction Stage

Embedded Mitigation

1.4.2.1. Embedded mitigation is described in the CTMP, and includes the following:

- Temporary traffic signals to be used where lane closures or partial carriageway closure is required. during peak times the signals will be manually adjusted to ensure delays are kept to a minimum;
- Road closures may be required where the highway is of insufficient width to accommodate works and have traffic continue to flow at a safe distance. Where this is required diversion routes will be agreed with the local highways authority; and
- Construction hours will be scheduled to avoid peak times, especially where schools are in the immediate vicinity of works, and to avoid particular major scheduled events.

Impacts

1.4.2.2. Within 200 m of the routes affected by construction traffic, the number of impacted receptors is shown in Table 53.

Table 53 - Impacted Receptors for Construction Traffic

Туре	Receptor Count
Residential	13,071
Commercial	578
Community	55
Military	0
Total Number of Receptors	13,704

1.4.2.3. Within the numbers of receptors shown in Table 53, there are receptors with particular sensitivity, as shown in Table 54.

Sensitive Receptor	Receptor Count				
Schools	16				
Medical	11				
Hospice	0				
Sheltered Accommodation	1				
Care Home	54				

Table 54 - Particularly Sensitive Receptors for Construction Traffic

1.4.2.4.

4. A summary of the results for generated construction traffic for the DS1 scenario is shown in Table 55, Figure 23.6, Figure 23.7 and Figure 23.10.

Table 55 – Generated Construction Traffic Assessment Results for the Do-Something Scenario 1 (2026)

		Construc	ction Scenario	DS1 2022
Pollutant		NO ₂	PM ₁₀	PM _{2.5}
Annual Mean Limit	Value (µg/m³)	40	40	25
	DM (2026) Maximum Modelled Concentration	33.6	23.1	13.0
Number of properties greater	DS1 (2026) Maximum Modelled Concentration	33.5	19.6	12.7
than limit value	Removed Exceedances	0	0	0
	New Exceedances	0	0	0
	Improvement in Concentration	8,586	7,717	6,020
Total Number of Properties	No Change in Concentration	3,107	4,484	6,609
	Deterioration in Concentration	2,011	1,503	1,075
Do Something-Do	Maximum Improvement	9.2	5.1	1.5
Minimum Annual Mean Change (µg/m³)	Maximum Deterioration	10.0	1.8	0.5

- 1.4.2.5. The summary of results shown in Table 55 shows that there is an improvement of 0.1 μ g/m³ in the highest predicted concentration at receptors within the study area for NO₂. The maximum DS1 concentration of 33.5 μ g/m³ is 84 % of the objective. There is a large improvement in the highest predicted concentration for PM₁₀ and a smaller improvement in the maximum PM_{2.5} concentration.
- 1.4.2.6. The highest predicted NO₂ concentration under the DS1 scenario is located at a single residential receptor at 72 Lower Road, east of the Bedhampton Roundabout.
- 1.4.2.7. The maximum predicted improvement of 9.2 µg/m³ in NO₂ concentrations is predicted at residential receptors off the A3 London Road in the Corbett Road area.
- 1.4.2.8. The maximum predicted deterioration of $10.0 \ \mu g/m^3$ in NO₂ concentrations is located at residential receptors the B2150 Hambledon Road where the DM concentration is $14.9 \ \mu g/m^3$.
- 1.4.2.9. For NO₂, PM₁₀ and PM_{2.5}, concentrations are predicted to improve at more receptors than are predicted to deteriorate under scenario DS1.
- 1.4.2.10. Areas of predicted improvement are modelled in the vicinity of planned temporary road closures as part of the Proposed Development.
- 1.4.2.11. A summary of the results for generated construction traffic for the DS2 scenario are shown in Table 56, Figure 23.8, Figure 23.9 and Figure 23.11.

Table 56 – Generated Construction Traffic Assessment Results for the Do-Something Scenario 2 (2026)

		Construction Scenario DS2 2022		
Pollutant		NO ₂	PM ₁₀	PM _{2.5}
Annual Mean Limit Value (µg/m³)		40	40	25
Number of properties greater than limit value	DM (2026) Maximum Modelled Concentration	33.6	23.1	13.0
	DS2 (2026) Maximum Modelled Concentration	29.6	18.5	12.7
	Removed Exceedances	0	0	0
	New Exceedances	0	0	0
Total Number of Properties	Improvement in Concentration	13,264	12,177	8,030
	No Change in Concentration	244	1,281	5,573
	Deterioration in Concentration	196	246	101

	Construction Scenario DS2 2022			
Pollutant		NO ₂	PM ₁₀	PM _{2.5}
Annual Mean Limit Value (µg/m³)		40	40	25
Do Something- Do Minimum Annual Mean Change (µg/m ³)	Maximum Improvement	9.4	4.9	1.5
	Maximum Deterioration	7.0	1.0	0.0

- 1.4.2.12. The summary results in Table 56 show that there is an improvement of $4.3 \ \mu g/m^3$ in the highest predicted concentration at receptors within the study area for NO₂ in the DS2 scenario. This is a larger improvement than the DS1 scenario. The maximum DS2 concentration of 29.6 $\mu g/m^3$ is 74 % of the objective. There is a large improvement in the highest predicted concentrations for PM₁₀, and a smaller improvement in the maximum PM_{2.5} concentration.
- 1.4.2.13. The highest predicted concentration for NO₂ of 29.6 μg/m³ under the DS2 scenario is located at a single residential receptor at 72 Lower Road, east of the Bedhampton Roundabout.
- 1.4.2.14. The maximum predicted improvement of 9.4 µg/m³ in NO₂ concentrations is predicted at residential receptors along Mountbatten Drive, Alexander Close and Corbett Road.
- 1.4.2.15. The maximum predicted deterioration of 7.0 μg/m³ in NO₂ concentrations is located at two residential receptors, St Michaels and The Cedars on Hambledon Road where the DM concentration is 14.9 μg/m³.
- 1.4.2.16. For NO₂, PM₁₀ and PM_{2.5}, concentrations are predicted to improve at more receptors than are predicted to deteriorate under scenario DS2. More receptors will experience an improvement under DS2 than DS1. Whilst some properties are shown to experience a deterioration in concentrations of all pollutants, the highest predicted deterioration is of a lower magnitude than the highest predicted improvement for NO₂ PM₁₀ and PM_{2.5}.

1.4.3. COMPLIANCE WITH DIRECTIVE 2008/50/EC

1.4.3.1. Due to the nature of the diversions, road closures and construction traffic operation, all of the predicted impacts are transitory in nature, and so are not predicted to impact on the ability of the Compliance Risk Road Network applicable to the proposed development to meet its obligations under EU Directive 2008/50/EC.

- 1.4.3.2. There is however, an area within the City of Portsmouth where the roadside concentration is predicted to be above the limit value for NO₂ of 40 μg/m³. The predicted concentration for 2026 at the roundabout of A3, Hope Street and Commercial Road is predicted to be 45.8 μg/m³ under the Do-Minimum and DS1 scenarios, and 44.9 μg/m³ under the DS2 scenario. The predicted 2026 compliance concentration for this area, adjusted using the Defra Roadside NO₂ Projection Factors (Department for Environment, Food and Rural Affairs, 2019), is 31.6 μg/m³.
- 1.4.3.3. The A3 between the roundabout with Hope Street and Commercial Street, up to the junction with Princess Royal Road is predicted to experience concentrations between 36 µg/m³ and 39 µg/m³, suggesting exceedances of the limit value may be possible taking into account error in the modelling, however due to the temporary nature of the diversions, the risk of exceedance is substantially reduced.

1.4.4. DECOMMISSIONING STAGE

1.4.4.1. Methodology and effects from decommissioning are expected to be of the same nature, magnitude and significance as for construction.

REFERENCES

- AEA Energy & Environment. (2008). *Diffusion Tubes for Ambient NO2 Monitoring: Practical Guidance for Laboratories and USers.* Department for Environment, Food & Rural Affairs.
- Department for Environment, Food & Rural Affairs. (2019, May). *Emisssions Fators toolkit*. Retrieved from GOV.UK: https://laqm.defra.gov.uk/review-andassessment/tools/emissions-factors-toolkit.html
- Department for Environment, Food and Rural Affairs. (2009). *Local Air Quality Management Technical Guidance LAQM.TG(09).* London: Department for Environment, Food and Rural Affairs.
- Department for Environment, Food and Rural Affairs. (2019, October). *Roadside NO2 Projection Factors*. Retrieved from GOV.UK.
- Department for the Environment, Food & Rural Affairs. (2019, May). *NOx to NO2 Calculator*. Retrieved from GOV.UK: https://laqm.defra.gov.uk/review-andassessment/tools/background-maps.html#NOxNO2calc
- Havant Borough Council. (2019). 2018 Air Quality Annual Status Report (ASR). Havant: Havant Borough Council.
- Institute of Air Quality Managment. (2016). *Guidance on the assessment of dust from demolition and construction.* London: Institute of Air Quality Managment.
- Moorcroft, S., Barrowcliffe, R., Cartmell, P., Chapman, M., Coakley, B., Conlan, B., . . . Young, A. (2017). *Land Use And Development Development Control: Planning For Air Quality v1.2.* London: Institute of Air Quality Managment.
- Portsmouth City Council. (2019). 2019 Air Quality Annual Status Report (ASR). Portsmouth: Portsmouth City Council.
- The Highways Agency. (2007). Design Manual for Roads and Bridges, Volume 11 Environmental Assessment, Section 3 Environmental Assessment Techniques, Part 1 HA 207/07 Air Quality. The Stationery Office Ltd.

